首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of the mechanical and ballistic properties of hybrid carbon/ aramid woven laminates
Institution:1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China;2. National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing, 100081, China;3. Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
Abstract:High-performance ballistic fibers, such as aramid fiber and ultra-high-molecular-weight polyethylene (UHMWPE), are commonly used in anti-ballistic structures due to their low density, high tensile strength and high specific modulus. However, their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure. In contrast, carbon fiber reinforced epoxy resin matrix composites (CFRP) have the characteristics of high modulus in the thickness direction and high shear resistance. However, carbon fibers are rarely used and applied for protection purposes. A hybridization with aramid fiber reinforced epoxy resin matrix composites (AFRP) and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites. The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated. Through conducting mechanical property tests and ballistic tests, two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software, respectively. The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced. The ballistic tests’ results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7% of AFRP. When CFRP was on the striking face, the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage. The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process. These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt% and 30 wt%.
Keywords:Carbon fiber  Aramid fiber  Hybrid composites  LS-DYNA  Numerical simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号