首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influences of different crossing types on dynamic response of underground cavern subjected to ground shock
Authors:Shao-liu Liu  Yue-tang Zhao  Kang Hu  Shi-hao Wang
Institution:State Key Laboratory of Disaster Prevention&Mitigation of Explosion&Impact, Army Engineering University of PLA, Nanjing, Jiangsu, 210007, China
Abstract:An intersecting cavern is a common structural form used in underground engineering, and its safety and stability performance directly control the service performance of the whole project. The dynamic re-sponses of the three kinds of crossing type (+-shaped, T-shaped, L-shaped) caverns subjected to ground shock were studied by numerical simulation. The velocity plus force mode boundary setting method was proposed in the coupled static and dynamic analysis of a deep underground cavern. The results show that, among the three types of crossing caverns, the+-shaped cavern is the most significantly affected by the dynamic action, followed by T-shaped, and then L-shaped caverns. The vault settlement, straight wall deformation, vault peak particle velocity, effective plastic strain of surrounding rock, and maximum principal stress and strain at the bottom of the lining of the straight wall increase with the increase of cavern span. The vault settlement, straight wall deformation, effective plastic strain of surrounding rock, and the maximum principal stress and strain at the bottom of lining to the straight wall decrease with the increase of lateral pressure coefficient, and the peak particle velocity at the vault increases. The variation is small compared with the change of cavern span. The influence range of the underground cavern intersection is two cavern diameters from the intersection centre. The bottom of the straight wall at the intersection is the weak part. It is suggested to thicken the support locally to improve the stability of the cavern.
Keywords:Intersecting cavern  Ground shock  Initial ground stress  Dynamic response
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号