首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of wave shaper on reactive materials jet formation and its penetration performance
Institution:Beijing Institute of Technology, China
Abstract:Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge (RLSC) are investigated by experiments and simulations. The reactive materials liner with a density of 2.3 g/cm3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380 °C. Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of 0.5, 1.0, and 1.5 CD (charge diameter), respectively. The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff, while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff. To understand the unusual experimental results, numerical simulations based on AUTODYN-2D code are conducted to discuss the wave shaper effect, including the propagation behavior of detonation wave, the velocity and temperature distribution of reactive jet, and penetration depth of reactive jet. The simulations indicate that, compared with RLSC without wave shaper, there is a higher temperature produced inside reactive jet with wave shaper. This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline, which results in significantly decreasing its penetration performance.
Keywords:Shaped charge  Reactive materials liner  Wave shaper  Reactive jet  Penetration performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号