首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Consider a monopolist who sells a single product to time‐sensitive customers located on a line segment. Customers send their orders to the nearest distribution facility, where the firm processes (customizes) these orders on a first‐come, first‐served basis before delivering them. We examine how the monopolist would locate its facilities, set their capacities, and price the product offered to maximize profits. We explicitly model customers' waiting costs due to both shipping lead times and queueing congestion delays and allow each customer to self‐select whether she orders or not, based on her reservation price. We first analyze the single‐facility problem and derive a number of interesting insights regarding the optimal solution. We show, for instance, that the optimal capacity relates to the square root of the customer volume and that the optimal price relates additively to the capacity and transportation delay costs. We also compare our solutions to a similar problem without congestion effects. We then utilize our single‐facility results to treat the multi‐facility problem. We characterize the optimal policy for serving a fixed interval of customers from multiple facilities when customers are uniformly distributed on a line. We also show how as the length of the customer interval increases, the optimal policy relates to the single‐facility problem of maximizing expected profit per unit distance. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

3.
Queueing systems with multiple servers are commonly used to model telecommunications systems. But, in general, the service rate of each of the servers is not the same. This fact is indeed true in a communication network where one path (server) may be a terrestrial link and the other (server) a satellite link with its inherent propagation delay. In this article we consider a two-server system where arriving customers are first placed in the queue for the faster server until that queue size reaches a certain threshold, whereupon they are diverted to the slower server. Additional arriving customers are assigned to the slower server until the faster server's queue drops to another lower threshold, at which point arrivals are reassigned to the faster server. We develop an exact mathematical model of the steady-state behavior of each queueing system and a simple analytic approximation.  相似文献   

4.
The individual and social optimum control policies for entry to an M/M//1 queue serving several classes of customers have been shown to be control-limit policies. The technique of policy iteration provides the social optimum policy for such a queue in a straightforward manner. In this article, the problem of finding the optimal control policy for the M/Ek/1 system is solved, thereby expanding the potential applicability of the solutions developed. The Markovian nature of the queueing system is preserved by considering the service as having k sequential phases, each with independent, identically distributed, exponential service times, through which a customer must pass to be serviced. The optimal policy derived by policy iteration for such a system is likely to be difficult to use because it requires knowledge of the number of phases rather than customers in the system when an arrival occurs. To circumvent this difficulty, a heuristic is used to find a good usable (implementable) solution. In addition, a mixed-integer program is developed which yields the optimal implementable solution when solved.  相似文献   

5.
Machine maintenance is modeled in the setting of a single‐server queue. Machine deterioration corresponds to slower service rates and failure. This leads to higher congestion and an increase in customer holding costs. The decision‐maker decides when to perform maintenance, which may be done pre‐emptively; before catastrophic failures. Similar to classic maintenance control models, the information available to the decision‐maker includes the state of the server. Unlike classic models, the information also includes the number of customers in queue. Considered are both a repair model and a replacement model. In the repair model, with random replacement times, fixed costs are assumed to be constant in the server state. In the replacement model, both constant and variable fixed costs are considered. It is shown in general that the optimal maintenance policies have switching curve structure that is monotone in the server state. However, the switching curve policies for the repair model are not always monotone in the number of customers in the queue. Numerical examples and two heuristics are also presented. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
In many practical multiserver queueing systems, servers not only serve randomly arriving customers but also work on the secondary jobs with infinite backlog during their idle time. In this paper, we propose a c‐server model with a two‐threshold policy, denoted by (e d), to evaluate the performance of this class of systems. With such a policy, when the number of idle servers has reached d (<c), then e (<d) idle agents will process secondary jobs. These e servers keep working on the secondary jobs until they find waiting customers exist in the system at a secondary job completion instant. Using the matrix analytic method, we obtain the stationary performance measures for evaluating different (e, d) policies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

7.
We consider two‐stage tandem queueing systems with dedicated servers in each station and a flexible server that is trained to serve both stations. We assume no arrivals, exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming a noncollaborative work discipline with idling and preemptions allowed. For larger holding costs in the first station, we show that (i) nonidling policies are optimal and (ii) if the flexible server is not faster than the dedicated servers, the optimal server allocation strategy has a threshold‐type structure. For all other cases, we provide numerical results that support the optimality of threshold‐type policies. Our numerical experiments also indicate that when the flexible server is faster than the dedicated server of the second station, the optimal policy may have counterintuitive properties, which is not the case when a collaborative service discipline is assumed. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 435–446, 2014  相似文献   

8.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

9.
A method is developed for determining the optimal policy for entry of customers from many independent classes of Poisson arrivals to a first-come, first-serve (for customers admitted to the queue) single-server queue with exponential service times. The solution technique utilizes a semi-Markov formulation or the decision problem.  相似文献   

10.
A double-ended queue with a Poisson arrival pattern is examined in a situation where the rates depend (in a restricted sense) on both the time and the state of the system. Under some circumstances, the rates can be controlled. This article studies the distribution of the difference in queue sizes for each member of a large class of control strategies and introduces the problem of determining the optimal times at which the control should be in effect in order to maximize certain objective functions.  相似文献   

11.
We consider a manufacturer (i.e., a capacitated supplier) that produces to stock and has two classes of customers. The primary customer places orders at regular intervals of time for a random quantity, while the secondary customers request a single item at random times. At a predetermined time the manufacturer receives advance demand information regarding the order size of the primary customer. If the manufacturer is not able to fill the primary customer's demand, there is a penalty. On the other hand, serving the secondary customers results in additional profit; however, the manufacturer can refuse to serve the secondary customers in order to reserve inventory for the primary customer. We characterize the manufacturer's optimal production and stock reservation policies that maximize the manufacturer's discounted profit and the average profit per unit time. We show that these policies are threshold‐type policies, and these thresholds are monotone with respect to the primary customer's order size. Using a numerical study we provide insights into how the value of information is affected by the relative demand size of the primary and secondary customers. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
We study optimal pricing for tandem queueing systems with finite buffers. The service provider dynamically quotes prices to incoming price sensitive customers to maximize the long-run average revenue. We present a Markov decision process model for the optimization problem. For systems with two stations, general-sized buffers, and two or more prices, we describe the structure of the optimal dynamic pricing policy and develop tailored policy iteration algorithms to find an optimal pricing policy. For systems with two stations but no intermediate buffer, we characterize conditions under which quoting either a high or a low price to all customers is optimal and provide an easy-to-implement algorithm to solve the problem. Numerical experiments are conducted to compare the developed algorithms with the regular policy iteration algorithm. The work also discusses possible extensions of the obtained results to both three-station systems and two-station systems with price and congestion sensitive customers using numerical analysis.  相似文献   

13.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

14.
This article generalizes the dynamic and stochastic knapsack problem by allowing the decision‐maker to postpone the accept/reject decision for an item and maintain a queue of waiting items to be considered later. Postponed decisions are penalized with delay costs, while idle capacity incurs a holding cost. This generalization addresses applications where requests of scarce resources can be delayed, for example, dispatching in logistics and allocation of funding to investments. We model the problem as a Markov decision process and analyze it through dynamic programming. We show that the optimal policy with homogeneous‐sized items possesses a bithreshold structure, despite the high dimensionality of the decision space. Finally, the value (or price) of postponement is illustrated through numerical examples. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 267–292, 2015  相似文献   

15.
We consider a capacitated inventory model with flexible delivery upgrades, in which the seller allocates its on‐hand inventory to price‐ and delivery‐time‐sensitive customers. The seller has two decisions: inventory commitment and replenishment. The former addresses how the on‐hand inventories are allocated between the two classes of customers within an inventory cycle. The latter addresses how the inventory is replenished between inventory cycles. We develop optimal inventory allocation, upgrade, and replenishment policies and demonstrate that the optimal policy can be characterized by a set of switching curves. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 418–426, 2014  相似文献   

16.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

17.
We consider a single-item inventory system in which the stock level can increase due to items being returned as well as decrease when demands occur. Returned items can be repaired and then used to satisfy future demand, or they can be disposed of. We identify those inventory levels where disposal is the best policy. It is shown that this problem is equivalent to a problem of controlling a single-server queue. When the return and demand processes are both Poisson, we find the optimal policy exactly. When the demand and return processes are more general, we use diffusion approximations to obtain an approximate model, which is then solved. The approximate model requires only mean and variance data. Besides the optimal policy, the output of the models includes such characteristics as the operating costs, the purchase rate for new items, the disposal rate for returned items and the average inventory level. Several numerical examples are given. An interesting by-product of our investigation is an approximation for the steady-state behavior of the bulk GI/G/1 queue with a queue limit.  相似文献   

18.
An optimal operating policy is characterized for the infinite‐horizon average‐cost case of a single server queueing control problem. The server may be turned on at arrival epochs or off at departure epochs. Two classes of customers, each of them arriving according to an independent Poisson processes, are considered. An arriving 1‐customer enters the system if the server is turned on upon his arrival, or if the server is on and idle. In the former case, the 1‐customer is selected for service ahead of those customers waiting in the system; otherwise he leaves the system immediately. 2‐Customers remain in the system until they complete their service requirements. Under a linear cost structure, this paper shows that a stationary optimal policy exists such that either (1) leaves the server on at all times, or (2) turns the server off when the system is empty. In the latter case, we show that the stationary optimal policy is a threshold strategy, this feature being commonplace in most of priority queueing systems and inventory models. However, the optimal policy in our model is determined by two thresholds instead of one. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 201–209, 2001  相似文献   

19.
Traditional inventory systems treat all demands of a given item equally. This approach is optimal if the penalty costs of all customers are the same, but it is not optimal if the penalty costs are different for different customer classes. Then, demands of customers with high penalty costs must be filled before demands of customers with low penalty costs. A commonly used inventory policy for dealing with demands with different penalty costs is the critical level inventory policy. Under this policy demands with low penalty costs are filled as long as inventory is above a certain critical level. If the inventory reaches the critical level, only demands with high penalty costs are filled and demands with low penalty costs are backordered. In this article, we consider a critical level policy for a periodic review inventory system with two demand classes. Because traditional approaches cannot be used to find the optimal parameters of the policy, we use a multidimensional Markov chain to model the inventory system. We use a sample path approach to prove several properties of this inventory system. Although the cost function is not convex, we can build on these properties to develop an optimization approach that finds the optimal solution. We also present some numerical results. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
The classical Economic Order Quantity Model requires the parameters of the model to be constant. Some EOQ models allow a single parameter to change with time. We consider EOQ systems in which one or more of the cost or demand parameters will change at some time in the future. The system we examine has two distinct advantages over previous models. One obvious advantage is that a change in any of the costs is likely to affect the demand rate and we allow for this. The second advantage is that often, the times that prices will rise are fairly well known by announcement or previous experience. We present the optimal ordering policy for these inventory systems with anticipated changes and a simple method for computing the optimal policy. For cases where the changes are in the distant future we present a myopic policy that yields costs which are near-optimal. In cases where the changes will occur in the relatively near future the optimal policy is significantly better than the myopic policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号