首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The multilocation replenishment and transshipment problem is concerned with several retailers facing random demand for the same item at distinct markets, that may use transshipments to eliminate excess inventory/shortages after demand realization. When the system is decentralized so that each retailer operates to maximize their own profit, there are incentive problems that prevent coordination. These problems arise even with two retailers who may pay each other for transshipped units. We propose a new mechanism based on a transshipment fund, which is the first to coordinate the system, in a fully noncooperative setting, for all instances of two retailers as well as all instances of any number of retailers. Moreover, our mechanism strongly coordinates the system, i.e., achieves coordination as the unique equilibrium. The computation and information requirements of this mechanism are realistic and relatively modest. We also present necessary and sufficient conditions for coordination and prove they are always satisfied with our mechanism. Numerical examples illustrate some of the properties underlying this mechanism for two retailers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

2.
Considering a supply chain with a supplier subject to yield uncertainty selling to a retailer facing stochastic demand, we find that commonly studied classical coordination contracts fail to coordinate both the supplier's production and the retailer's procurement decisions and achieve efficient performance. First, we study the vendor managed inventory (VMI) partnership. We find that a consignment VMI partnership coupled with a production cost subsidy achieves perfect coordination and a win‐win outcome; it is simple to implement and arbitrarily allocates total channel profit. The production cost subsidy optimally chosen through Nash bargaining analysis depends on the bargaining power of the supplier and the retailer. Further, motivated by the practice that sometimes the retailer and the supplier can arrange a “late order,” we also analyze the behavior of an advance‐purchase discount (APD) contract. We find that an APD with a revenue sharing contract can efficiently coordinate the supply chain as well as achieve flexible profit allocation. Finally, we explore which coordination contract works better for the supplier vs. the retailer. It is interesting to observe that Nash bargaining solutions for the two coordination contracts are equivalent. We further provide recommendations on the applications of these contracts. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 305–319, 2016  相似文献   

3.
An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a periodic‐review inventory system under stochastic demand and stochastic limited supply, for which ACI is available. We show that the optimal ordering policy is a state‐dependent base‐stock policy characterized by a base‐stock level that is a function of ACI. We establish a link with inventory models that use advance demand information (ADI) by developing a capacitated inventory system with ADI, and we show that equivalence can only be set under a very specific and restrictive assumption, implying that ADI insights will not necessarily hold in the ACI environment. Our numerical results reveal several managerial insights. In particular, we show that ACI is most beneficial when there is sufficient flexibility to react to anticipated demand and supply capacity mismatches. Further, most of the benefits can be achieved with only limited future visibility. We also show that the system parameters affecting the value of ACI interact in a complex way and therefore need to be considered in an integrated manner. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

4.
We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer. When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer's capacity. We discuss the impact of coordination on the supply chain cost as well as on the manufacturer's capacity. We also identify the situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

6.
目前,对供应链库存风险损失的定量研究比较少,而定量研究中鲜有对风险偏好变化问题的研究,因此首先分析了各种风险度量方法,通过比较采用了险度函数作为对装备供应链风险损失的度量方法;然后,结合装备供应链实际,提出了定常风险偏好特性险度函数和可变风险偏好特性险度函数的适用范围,以及装备供应链库存风险损失度量的损失水平值,并给出了装备供应链库存风险损失度量函数;最后,通过算例进行了验证.实验结果表明:行为人的不同风险偏好特性会对同一事态产生不同的预判,进而可能影响对风险的决策,这是符合客观现实的.  相似文献   

7.
Many manufacturers sell their products through retailers and share the revenue with those retailers. Given this phenomenon, we build a stylized model to investigate the role of revenue sharing schemes in supply chain coordination and product variety decisions. In our model, a monopolistic manufacturer serves two segments of consumers, which are distinguished by their willingness to pay for quality. In the scenario with exogenous revenue sharing ratios, when the potential gain from serving the low segment is substantial (e.g., the low‐segment consumers' willingness to pay is high enough or the low segment takes a large enough proportion of the market), the retailer is better off abandoning the revenue sharing scheme. Moreover, when the potential gain from serving the low (high) segment is substantial enough, the manufacturer finds it profitable to offer a single product. Furthermore, when revenue sharing ratios are endogenous, we divide our analysis into two cases, depending on the methods of cooperation. When revenue sharing ratios are negotiated at the very beginning, the decentralized supply chain causes further distortion. This suggests that the central premise of revenue sharing—the coordination of supply chains—may be undermined if supply chain parties meticulously bargain over it.  相似文献   

8.
In this article, we develop a novel electric power supply chain network model with fuel supply markets that captures both the economic network transactions in energy supply markets and the physical network transmission constraints in the electric power network. The theoretical derivation and analysis are done using the theory of variational inequalities. We then apply the model to a specific case, the New England electric power supply chain, consisting of six states, five fuel types, 82 power generators, with a total of 573 generating units, and 10 demand market regions. The empirical case study demonstrates that the regional electric power prices simulated by our model match the actual electricity prices in New England very well. We also compute the electric power prices and the spark spread, an important measure of the power plant profitability, under natural gas and oil price variations. The empirical examples illustrate that in New England, the market/grid‐level fuel competition has become the major factor that affects the influence of the oil price on the natural gas price. Finally, we utilize the model to quantitatively investigate how changes in the demand for electricity influence the electric power and the fuel markets from a regional perspective. The theoretical model can be applied to other regions and multiple electricity markets under deregulation to quantify the interactions in electric power/energy supply chains and their effects on flows and prices. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

9.
When facing uncertain demand, several firms may consider pooling their inventories leading to the emergence of two key contractual issues. How much should each produce or purchase for inventory purposes? How should inventory be allocated when shortages occur to some of the firms? Previously, if the allocations issue was considered, it was undertaken through evaluation of the consequences of an arbitrary priority scheme. We consider both these issues within a Nash bargaining solution (NBS) cooperative framework. The firms may not be risk neutral, hence a nontransferable utility bargaining game is defined. Thus the physical pooling mechanism itself must benefit the firms, even without any monetary transfers. The firms may be asymmetric in the sense of having different unit production costs and unit revenues. Our assumption with respect to shortage allocation is that a firm not suffering from a shortfall, will not be affected by any of the other firms' shortages. For two risk neutral firms, the NBS is shown to award priority on all inventory produced to the firm with higher ratio of unit revenue to unit production cost. Nevertheless, the arrangement is also beneficial for the other firm contributing to the total production. We provide examples of Uniform and Bernoulli demand distributions, for which the problem can be solved analytically. For firms with constant absolute risk aversion, the agreement may not award priority to any firm. Analytically solvable examples allow additional insights, e.g. that higher risk aversion can, for some problem parameters, cause an increase in the sum of quantities produced, which is not the case in a single newsvendor setting. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

10.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

11.
This note studies the optimal inspection policies in a supply chain in which a manufacturer purchases components from a supplier but has no direct control of component quality. The manufacturer uses an inspection policy and a damage cost sharing contract to encourage the supplier to improve the component quality. We find that all‐or‐none inspection policies are optimal for the manufacturer if the supplier's share of the damage cost is larger than a threshold; otherwise, the manufacturer should inspect a fraction of a batch. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号