首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The objective of this paper is to determine the optimum inventory policy for a multi-product periodic review dynamic inventory system. At the beginning of each period two decisions are made for each product. How much to “normal order” with a lead time of λn periods and how much to “emergency order” with a lead time of λe periods, where λe = λn - 1. It is assumed that the emergency ordering costs are higher than the normal ordering costs. The demands for each product in successive periods are assumed to form a sequence of independent identically distributed random variables with known densities. Demands for individual products within a period are assumed to be non-negative, but they need not be independent. Whenever demand exceeds inventory their difference is backlogged rather than lost. The ordering decisions are based on certain costs and two revenue functions. Namely, the procurement costs which are assumed to be linear for both methods of ordering, convex holding and penalty costs, concave salvage gain functions, and linear credit functions. There is a restriction on the total amount that can be emergency ordered for all products. The optimal ordering policy is determined for the one and N-period models.  相似文献   

2.
This paper develops a single period model for a specific class of multiproduct perishable inventory systems where demands are interdependent. This class of inventory systems has the property that there is economic substitution between products. It is shown that the optimal policy has the economic substitution property, and that the rate of substitution is age dependent. The model serves as a generalization of a theorem discovered by Ignall and Veinott.  相似文献   

3.
Like airlines and hotels, sports teams and entertainment venues can benefit from revenue management efforts for their ticket sales. Teams and entertainment venues usually offer bundles of tickets early in their selling horizon and put single‐event tickets on sale at a later date; these organizations must determine the best time to offer individual tickets because both types of ticket sales consume the same fixed inventory. We model the optimal a priori timing decision for a seller with a fixed number of identical tickets to switch from selling the tickets as fixed bundles to individual tickets to maximize the revenue realized before the start of the performance season. We assume that bundle and single‐ticket customers each arrive according to independent, nonhomogeneous Markovian death processes with a linear death rate that can vary over time and that the benefit from selling a ticket in a package is higher than from selling the ticket individually. We characterize the circumstances in which it is optimal for the seller to practice mixed bundling and when the seller should only sell bundles or individual tickets, and we establish comparative statics for the optimal timing decision for the special case of constant customer arrival rates. We extend our analytical results to find the optimal time for offering two groups of tickets with high and low demand. Finally, we apply the timing model to a data set obtained from the sports industry. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
Consider the problem of scheduling two products on a single machine or through two machines in series when demand is constant and there is a changeover cost between runs of different products on the same machine. As well as setting batch sizes, it is assumed that the production scheduler can choose the production rate for each product, provided an upper bound is not exceeded. This is equivalent to permitting distributed inserted idle time over the production run. It is shown that characteristic of the optimum schedule is that there is no idle time concentrated between runs; it is all distributed over the run. If the inventory charge is based on average inventory then one product is always produced at maximum rate on the bottleneck stage; however, if there is an inventory constraint based on maximum inventory then in the single-stage case it can occur that neither product is produced at maximum rate.  相似文献   

5.
Many revenue management problems have a network aspect. In this paper, we argue that a network can be thought of as a system of substitutable and complementary products, and the value of a revenue management model should be supermodular or submodular in the availability of two resources as the resources are economic substitutes or complements. We demonstrate that this is true in the case of a two‐resource dynamic stochastic revenue management model and show how this applies for multi‐resource deterministic static revenue management models. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
Trade-in programs have been widely adopted to enhance repeat purchase from replacement customers. Considering that a market consists of replacement and new segments, we study the joint and dynamic decisions on the selling price of new product (hereafter, “selling price”) and the trade-in price involved in the program. By adopting a vertical product differentiation choice model, we investigate two scenarios in this paper. In the base model, the manufacturer has sufficiently large production capacity to fulfill the customer demand. We characterize the structural properties of the joint pricing decisions and compare them with the optimal pricing policy under regular selling. We further propose a semi-dynamic trade-in program, under which the new product is sold at a fixed price and the trade-in price can be adjusted dynamically. Numerical experiments are conducted to evaluate the performance of the dynamic and semi-dynamic trade-in programs. In an extended model, we consider the scenario in which the manufacturer stocks a batch of new products in the beginning of the selling horizon and the inventory cannot be replenished. Following a revenue management framework, we characterize the structural properties with respect to time period and inventory level of new products.  相似文献   

7.
When facing uncertain demand, several firms may consider pooling their inventories leading to the emergence of two key contractual issues. How much should each produce or purchase for inventory purposes? How should inventory be allocated when shortages occur to some of the firms? Previously, if the allocations issue was considered, it was undertaken through evaluation of the consequences of an arbitrary priority scheme. We consider both these issues within a Nash bargaining solution (NBS) cooperative framework. The firms may not be risk neutral, hence a nontransferable utility bargaining game is defined. Thus the physical pooling mechanism itself must benefit the firms, even without any monetary transfers. The firms may be asymmetric in the sense of having different unit production costs and unit revenues. Our assumption with respect to shortage allocation is that a firm not suffering from a shortfall, will not be affected by any of the other firms' shortages. For two risk neutral firms, the NBS is shown to award priority on all inventory produced to the firm with higher ratio of unit revenue to unit production cost. Nevertheless, the arrangement is also beneficial for the other firm contributing to the total production. We provide examples of Uniform and Bernoulli demand distributions, for which the problem can be solved analytically. For firms with constant absolute risk aversion, the agreement may not award priority to any firm. Analytically solvable examples allow additional insights, e.g. that higher risk aversion can, for some problem parameters, cause an increase in the sum of quantities produced, which is not the case in a single newsvendor setting. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

8.
E‐commerce platforms afford retailers unprecedented visibility into customer purchase behavior and provide an environment in which prices can be updated quickly and cheaply in response to changing market conditions. This study investigates dynamic pricing strategies for maximizing revenue in an Internet retail channel by actively learning customers' demand response to price. A general methodology is proposed for dynamically pricing information goods, as well as other nonperishable products for which inventory levels are not an essential consideration in pricing. A Bayesian model of demand uncertainty involving the Dirichlet distribution or a mixture of such distributions as a prior captures a wide range of beliefs about customer demand. We provide both analytic formulas and efficient approximation methods for updating these prior distributions after sales data have been observed. We then investigate several strategies for sequential pricing based on index functions that consider both the potential revenue and the information value of selecting prices. These strategies require a manageable amount of computation, are robust to many types of prior misspecification, and yield high revenues compared to static pricing and passive learning approaches. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
This article uses game theoretic concepts to analyze the inventory problem with two substitutable products having random demands. It is assumed that the two decision makers (players) who make ordering decisions know the substitution rates and the demand densities for both products. Since each player's decision affects the other's single-period expected profit, game theory is used to find the order quantities when the players use a Nash strategy (i.e., they act rationally). We prove the existence and uniqueness of the Nash solution. It is also shown that when one of the players acts irrationally for the sole purpose of inflicting maximum damage on the other, the maximin strategy for the latter reduces to using the solution for the classical single-period inventory problem. We also discuss the cooperative game and prove that the players always gain if they cooperate and maximize a joint objective function.  相似文献   

10.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

11.
We consider the joint pricing and inventory‐control problem for a retailer who orders, stocks, and sells two products. Cross‐price effects exist between the two products, which means that the demand of each product depends on the prices of both products. We derive the optimal pricing and inventory‐control policy and show that this policy differs from the base‐stock list‐price policy, which is optimal for the one‐product problem. We find that the retailer can significantly improve profits by managing the two products jointly as opposed to independently, especially when the cross‐price demand elasticity is high. We also find that the retailer can considerably improve profits by using dynamic pricing as opposed to static pricing, especially when the demand is nonstationary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

12.
This article studies the inventory competition under yield uncertainty. Two firms with random yield compete for substitutable demand: If one firm suffers a stockout, which can be caused by yield failure, its unsatisfied customers may switch to its competitor. We first study the case in which two competing firms decide order quantities based on the exogenous reliability levels. The results from the traditional inventory competition are generalized to the case with yield uncertainty and we find that quantity and reliability can be complementary instruments in the competition. Furthermore, we allow the firms to endogenously improve their yield reliability before competing in quantity. We show that the reliability game is submodular under some assumptions. The results indicate that the competition in quantity can discourage the reliability improvement. With an extensive numerical study, we also demonstrate the robustness of our analytical results in more general settings. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 107–126, 2015  相似文献   

13.
Vendor‐managed revenue‐sharing arrangements are common in the newspaper and other industries. Under such arrangements, the supplier decides on the level of inventory while the retailer effectively operates under consignment, sharing the sales revenue with his supplier. We consider the case where the supplier is unable to predict demand, and must base her decisions on the retailer‐supplied probabilistic forecast for demand. We show that the retailer's best choice of a distribution to report to his supplier will not be the true demand distribution, but instead will be a degenerate distribution that surprisingly induces the supplier to provide the system‐optimal inventory quantity. (To maintain credibility, the retailer's reports of daily sales must then be consistent with his supplied forecast.) This result is robust under nonlinear production costs and nonlinear revenue‐sharing. However, if the retailer does not know the supplier's production cost, the forecast “improves” and could even be truthful. That, however, causes the supplier's order quantity to be suboptimal for the overall system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

14.
This paper considers the production of two products with known demands over a finite set of periods. The production and inventory carrying costs for each product are assumed to be concave. We seek the minimum cost production schedule meeting all demands, without backlogging, assuming that at most one of the two products can be produced in any period. The optimization problem is first stated as a nonlinear programming problem, which allows the proof of a result permitting the search for the optimal policy to be restricted to those which produce a product only when its inventory level is zero. A dynamic programming formulation is given and the model is then formulated as a shortest route problem in a specially constructed network.  相似文献   

15.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

16.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   

17.
We consider the problem in which a set of products has to be shipped from a common origin to a common destination through one or several intermediate nodes with the objective of minimizing the sum of inventory and transportation costs when a set of possible shipping frequencies is given on each link. From the theoretical point of view, the main issue is the computation of the inventory cost in the intermediate nodes. From the computational point of view, given that the simpler single link problem is known to be NP-hard, we present four classes of heuristic algorithms. The first two classes are based on the decomposition of the sequence in links, the third class on the adaptation of the EOQ-type solution known for the continuous case, and the fourth on the optimal solution of a simpler problem through dynamic programming techniques. Finally, we compare them on a set of randomly generated problem instances. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 399–417, 1999  相似文献   

18.
In this article we model a two-echelon (two levels of repair, one level of supply) repairable-item inventory system using continuous-time Markov processes. We analyze two models. In the first model we assume a system with a single base. In the second model we expand this model to include n bases. The Markov approach gives rise to multidimensional state spaces that are large even for relatively small problems. Because of this, we utilize aggregate/disaggregate techniques to develop a solution algorithm for finding the steady-state distribution. This algorithm is exact for the single-base model and is an approximation for the n-base model, in which case it is found to be very accurate and computationally very efficient.  相似文献   

19.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

20.
This paper analyzes the problem of determining desirable spares inventory levels for repairable items with dependent repair times. The problem is important for repairable products such as aircraft engines which can have very large investment in spares inventory levels. While existing models can be used to determine optimal inventory spares levels when repair times are independent, the practical considerations of limited repair shop capacity and prioritized shop dispatching rules combine to make repair times not independent of one another. In this research a simulation model of a limited capacity repair facility with prioritized scheduling is used to explore a variety of heuristic approaches to the spares stocking decision. The heuristics are also compared with use of a model requiring independent repair times (even though that assumption is not valid here). The results show that even when repair time dependencies are present, the performance of a model which assumes independent repair times is quite good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号