首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Optimal allocation and control of limited inspection capacity for multiple production processes are considered. The production processes, which operate independently but share inspection capacity, are subject to random failures and are partially observed through inspection. This study proposes an approach of stochastic allocation, using a Markov decision process, to minimize expected total discounted cost over an infinite time horizon. Both an optimal model and a disaggregate approximation model are introduced. The study provides some structural results and establishes that the control policy is of a threshold type. Numerical experiments demonstrate a significantly decreased amount of computational time required for the disaggregate approach when compared to the optimal solution, while generating very good control policies. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 78–94, 2002; DOI 10.1002/nav.1049  相似文献   

2.
Arriving (generic) jobs may be processed at one of several service stations, but only when no other (dedicated) jobs are waiting there. We consider the problem of how to route these incoming background jobs to make best use of the spare service capacity available at the stations. We develop an approximative approach to Whittle's proposal for restless bandits to obtain an index policy for routing. The indices concerned are increasing and nonlinear in the station workload. A numerical study testifies to the strong performance of the index policies developed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

3.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

4.
In this paper we optimally control service rates for an inventory system of service facilities with perishable products. We consider a finite capacity system where arrivals are Poisson‐distributed, lifetime of items have exponential distribution, and replenishment is instantaneous. We determine the service rates to be employed at each instant of time so that the long‐run expected cost rate is minimized for fixed maximum inventory level and capacity. The problem is modelled as a semi‐Markov decision problem. We establish the existence of a stationary optimal policy and we solve it by employing linear programming. Several numerical examples which provide insight to the behavior of the system are presented. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 464–482, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10021  相似文献   

5.
Blue strike aircraft enter region ? to attack Red targets. In Case 1, Blue conducts (preplanned) SEAD to establish air superiority. In the (reactive) SEAD scenario, which is Case 2, such superiority is already in place, but is jeopardized by prohibitive interference from Red, which threatens Blue's ability to conduct missions. We utilize both deterministic and stochastic models to explore optimal tactics for Red in such engagements. Policies are developed which will guide both Red's determination of the modes of operation of his engagement radar, and his choice of Blue opponent to target next. An index in the form of a simple transaction kill ratio plays a major role throughout. Published 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 723–742, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10046  相似文献   

6.
The primary objective of this work is to introduce and perform a detailed study of a class of multistate reliability structures in which no ordering in the levels of components' performances is necessary. In particular, the present paper develops the basic theory (exact reliability formulae, reliability bounds, asymptotic results) that will make it feasible to investigate systems whose components are allowed to experience m ≥ 2 kinds of failure (failure modes), and their breakdown is described by different families of cut sets in each mode. For illustration purposes, two classical (binary) systems are extended to analogous multiple failure mode structures, and their reliability performance (bounds and asymptotic behavior) is investigated by numerical experimentation. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 167–185, 2002; DOI 10.1002/nav.10007  相似文献   

7.
In this paper a case study dealing with the maintenance problem of jib cranes is presented. A jib crane is viewed as a complex system whose performance is observed as a single realization over period of time. After pointing out limitations of existing stochastic models to analyze the observed realization a new family of bivariate stochastic processes is introduced. The data of jib crane is analyzed using new model and cross‐validated using part of the data set. It is noted that the new family of stochastic processes is useful to analyze bivariate data where one of the variables is finitely valued and the other is nonnegative and continuous. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 231–243, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10006  相似文献   

8.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

9.
In this paper, we present an optimization model for coordinating inventory and transportation decisions at an outbound distribution warehouse that serves a group of customers located in a given market area. For the practical problems which motivated this paper, the warehouse is operated by a third party logistics provider. However, the models developed here may be applicable in a more general context where outbound distribution is managed by another supply chain member, e.g., a manufacturer. We consider the case where the aggregate demand of the market area is constant and known per period (e.g., per day). Under an immediate delivery policy, an outbound shipment is released each time a demand is realized (e.g., on a daily basis). On the other hand, if these shipments are consolidated over time, then larger (hence more economical) outbound freight quantities can be dispatched. In this case, the physical inventory requirements at the third party warehouse (TPW) are determined by the consolidated freight quantities. Thus, stock replenishment and outbound shipment release policies should be coordinated. By optimizing inventory and freight consolidation decisions simultaneously, we compute the parameters of an integrated inventory/outbound transportation policy. These parameters determine: (i) how often to dispatch a truck so that transportation scale economies are realized and timely delivery requirements are met, and (ii) how often, and in what quantities, the stock should be replenished at the TPW. We prove that the optimal shipment release timing policy is nonstationary, and we present algorithms for computing the policy parameters for both the uncapacitated and finite cargo capacity problems. The model presented in this study is considerably different from the existing inventory/transportation models in the literature. The classical inventory literature assumes that demands should be satisfied as they arrive so that outbound shipment costs are sunk costs, or else these costs are covered by the customer. Hence, the classical literature does not model outbound transportation costs. However, if a freight consolidation policy is in place then the outbound transportation costs can no longer be ignored in optimization. Relying on this observation, this paper models outbound transportation costs, freight consolidation decisions, and cargo capacity constraints explicitly. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 531–556, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10030  相似文献   

10.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
Recent years have seen a strong trend toward outsourcing warranty repair services to outside vendors. In this article we consider the problem of dynamically routing warranty repairs to service vendors when warranties have priority levels. Each time an item under warranty fails, it is sent to one of the vendors for repair. Items covered by higher priority warranty receive higher priority in repair service. The manufacturer pays a fixed fee per repair and incurs a linear holding cost while an item is undergoing or waiting for repair. The objective is to minimize the manufacturer's long‐run average cost. Because of the complexity of the problem, it is very unlikely that there exist tractable ways to find the optimal routing strategies. Therefore, we propose five heuristic routing procedures that are applicable to real‐life problems. We evaluate the heuristics using simulation. The simulation results show that the index‐based “generalized join the shortest queue” policy, which applies a single policy improvement step to an initial state‐independent policy, performs the best among all five heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
We consider a reader—writer system consisting of a single server and a fixed number of jobs (or customers) belonging to two classes. Class one jobs are called readers and any number of them can be processed simultaneously. Class two jobs are called writers and they have to be processed one at a time. When a writer is being processed no other writer or readers can be processed. A fixed number of readers and writers are ready for processing at time 0. Their processing times are independent random variables. Each reader and writer has a fixed waiting cost rate. We find optimal scheduling rules that minimize the expected total waiting cost (expected total weighted flowtime). We consider both nonpreemptive and preemptive scheduling. The optimal nonpreemptive schedule is derived by a variation of the usual interchange argument, while the optimal schedule in the preemptive case is given by a Gittins index policy. These index policies continue to be optimal for systems in which new writers enter the system in a Poisson fashion. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 483–495, 1998  相似文献   

13.
In this paper, we study upper and lower bounds on the reliability in new better than used in expectation (NBUE) life distribution class with fixed first two moments. By a constructive proof, we determine the upper bounds on the reliability analytically in different regions and show that these bounds are sharp. For the lower bounds, similar results are obtained except in one region. For that region, a conjecture is given for further study. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 781–797, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10035  相似文献   

14.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

15.
In this paper, Markovian models of three‐on‐one stochastic firefights between ground‐based weapon systems are developed. These models address a common scenario of interest to the military, but one which has been much neglected in analytic combat models, that of combat between a hidden defender and an exposed attacking force. Each combatant must detect an opponent before commencing their firing cycle, a task which is considerably more difficult for the attacker. In the models developed here, the defender detects the exposed attacking group after an exponentially distributed time interval, while each attacker has a fixed probability of detecting the defender via the flash signature produced after each shot fired by him. The utility of the approach is demonstrated by investigating what impact the introduction of a coordinated gun‐laying system for the attacking force might have, a system made possible by battlefield digitization. The method used here allows models to be developed incrementally. This and other advantages of the Markovian approach are discussed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 627–646, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10041  相似文献   

16.
Assemble in Advance (AIA) policy reduces assembly cost due to advance planning, while Assemble to Order (ATO) policy eliminates assembly of excessive (more than demanded) units. The tradeoffs between the two policies have been studied in the past for single product environments. Moreover, it was shown that it is beneficial to employ AIA and ATO simultaneously. In this article, we study the employment of such a composite assembly policy in a multiproduct environment with component commonality. When common components are used, ATO may also enable us to benefit from the risk pooling effect. We provide important managerial insights such as: the multiperiod problem is myopic and changes in inventory levels due to the use of common components, and demonstrate the potential profit increase compared to other policies.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

17.
A districting problem is formulated as a network partitioning model where each link has one weight to denote travel time and another weight to denote workload. The objective of the problem is to minimize the maximum diameter of the districts while equalizing the workload among the districts. The case of tree networks is addressed and efficient algorithms are developed when the network is to be partitioned into two or three districts. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 143–158, 2002; DOI 10.1002/nav.10003  相似文献   

18.
N jobs are available for processing by a single machine. Jobs make (stochastic) progress while being processed but deteriorate while awaiting processing. The pioneering work of Browne and Yechiali, who developed scheduling policies for such models, is extended (i) to incorporate a precedence relation on the job set, delimiting the class of admissible policies, and (ii) to preemptive scheduling models. For the latter, we demonstrate that under appropriate conditions there is an optimal policy which is nonpreemptive. This is also achieved for a class of preemptive models in which processing generates delays for waiting jobs. A single class of algorithms is shown to generate optimal policies for many of the problems considered. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
In this paper, a single‐machine scheduling problem with weighted earliness and tardiness penalties is considered. Idle time between two adjacent jobs is permitted and due dates of jobs could be unequal. The dominance rules are utilized to develop a relationship matrix, which allows a branch‐and‐bound algorithm to eliminate a high percentage of infeasible solutions. After combining this matrix with a branching strategy, a procedure to solve the problem is proposed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 760–780, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10039  相似文献   

20.
In this paper we consider the problem of minimizing the costs of outsourcing warranty repairs when failed items are dynamically routed to one of several service vendors. In our model, the manufacturer incurs a repair cost each time an item needs repair and also incurs a goodwill cost while an item is awaiting and undergoing repair. For a large manufacturer with annual warranty costs in the tens of millions of dollars, even a small relative cost reduction from the use of dynamic (rather than static) allocation may be practically significant. However, due to the size of the state space, the resulting dynamic programming problem is not exactly solvable in practice. Furthermore, standard routing heuristics, such as join‐the‐shortest‐queue, are simply not good enough to identify potential cost savings of any significance. We use two different approaches to develop effective, simply structured index policies for the dynamic allocation problem. The first uses dynamic programming policy improvement while the second deploys Whittle's proposal for restless bandits. The closed form indices concerned are new and the policies sufficiently close to optimal to provide cost savings over static allocation. All results of this paper are demonstrated using a simulation study. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号