首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Populations of many types of component are heterogeneous and often consist of a small number of different subpopulations. This is called a mixture and it arises in a number of situations. For example, a majority of products in industrial populations are mixtures of defective items with shorter lifetimes and standard items with longer lifetimes. It is a well‐known result that distributions with decreasing failure rates are closed under mixture. However, mixtures of distributions with increasing failure rates are not easily classifiable. If the subpopulations involved in the mixture have increasing failure rates, there might be some upward movement in the mixture and later a general downward pull towards the strongest component. Little work has been done in describing the shape of mixture failure rates when all subpopulations do not have decreasing failure rate. In this paper, we present general results that describe the shape and behavior of a failure rate of a mixture obtained from two Weibull subpopulations with strictly increasing failure rates. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

2.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

3.
There has been much research on the general failure model recently. In the general failure model, when the unit fails at its age t, Type I failure (minor failure) occurs with probability 1 ? p(t) and Type II failure (catastrophic failure) occurs with probability p(t). In the previous research, some specific shapes (constant, non‐decreasing, or bathtub‐shape) on the probability function p(t) are assumed. In this article, general results on some probability functions are obtained and applied to study the shapes of p(t). The results are also applied to determining the optimal inspection and allocation policies in maintenance problems. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
The present article discusses the properties of the mean residual life function in a renewal process. We examine the relationship this function has with the failure rate function and the conventional mean, variance and coefficient of variation of residual life. We also discuss some monotonicity properties of the mean residual life function. A partial order based on the renewal mean residual function is introduced along with its interrelationship with some existing stochastic orders. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

5.
Burn‐in procedure is a manufacturing technique that is intended to eliminate early failures of system or product. Burning‐in a component or system means to subject it to a period of use prior to being used in field. Generally, burn‐in is considered expensive and so the length of burn‐in is typically limited. Thus, burn‐in is most often accomplished in an accelerated environment in order to shorten the burn‐in process. A new failure rate model for an accelerated burn‐in procedure, which incorporates the accelerated ageing process induced by the accelerated environmental stress, is proposed. Under a more general assumption on the shape of failure rate function of products, which includes the traditional bathtub‐shaped failure rate function as a special case, upper bounds for optimal burn‐in time will be derived. A numerical example will also be given for illustration. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
The notions of the likelihood ratio order of degree s (s ≥ 0) are introduced for both continuous and discrete integer‐valued random variables. The new orders for s = 0, 1, and 2 correspond to the likelihood ratio, hazard rate, and mean residual life orders. We obtain some basic properties of the new orders and their up shifted stochastic orders, and derive some closure properties of them. Such a study is meaningful because it throws an important light on the understanding of the properties of the likelihood ratio, hazard rate, and mean residual life orders. On the other hand, the properties of the new orders have potential applications. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

7.
The concepts of a bathtub-shaped failure rate and upside-down bathtub-shaped mean residual life for discrete lifetime distributions are considered. The relationship between these concepts is established. The discrete counterparts of IFRA and DFRA classes discussed in the continuous case are combined into the class of a bathtub-shaped failure rate average. The relationship between bathtub-shaped failure rate and bathtub-shaped failure rate average is also given. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
This paper is devoted to study several aspects of the median residual life function (MERLF). In reliability studies, it is well known that, although the MERLF have several advantages over the mean residual life function (MRLF), the MRLF has the good property of uniquely determine a life distribution whereas either the median residual life function (MERLF) or an α‐percentile residual life do not have such good property. We shall give a characterization result where knowledge of both the MERLF and the survival function on an interval does uniquely determine the distribution. Moreover, in order to apply this characterization in practical situations, we propose a method to estimate the necessary information of the survival function. Relationships between analytical properties of the survival function and its associated MERLF are also obtained. Bryson and Siddiqui [J Am Statist Assoc 64 (1969), 1472–1483] proved relationships among seven criteria for aging, out of which two contained the MRLF (decreasing MRLF and net decreasing MRLF). In this paper, we prove that the same pattern of relationships holds if the MRLF is replaced by the MERLF. We also examine the aging criteria corresponding to an increasing MERLF and show that there is no relation between the behavior (increasing or decreasing) of the MERLF and of the MRLF. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

9.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   

10.
An age‐dependent repair model is proposed. The notion of the “calendar age” of the product and the degree of repair are used to define the virtual age of the product. The virtual failure rate function and the virtual hazard function related to the lifetime of the product are discussed. Under a nonhomogeneous Poisson process scenario the expected warranty costs for repairable products associated with linear pro‐rata, nonrenewing free replacement and renewing free replacement warranties are evaluated. Illustration of the results is given by numerical and graphical examples. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

11.
Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.  相似文献   

12.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

13.
复合材料性能具有较大的分散性,在表征复合材料疲劳寿命时,必须考虑分散性的影响.以M21C复合材料开孔层合板为研究对象,采用Sendeckyj等效静强度模型和随机变量函数的概率分布方法推导了复合材料层合板疲劳寿命形状参数和剩余强度形状参数的关系,通过试验和统计的方法获得了M21 C复合材料开孔层合板的疲劳寿命形状参数和疲...  相似文献   

14.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

15.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we study burn‐in procedure for a system that is maintained under periodic inspection and perfect repair policy. Assuming that the underlying lifetime distribution of a system has an initially decreasing and/or eventually increasing failure rate function, we derive upper and lower bounds for the optimal burn‐in time, which maximizes the system availability. Furthermore, adopting an age replacement policy, we derive upper and lower bounds for the optimal age parameter of the replacement policy for each fixed burn‐in time and a uniform upper bound for the optimal burn‐in time given the age replacement policy. These results can be used to reduce the numerical work for determining both optimal burn‐in time and optimal replacement policy. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
New partial orderings of life distributions are given. The concepts of decreasing mean residual life, new better than used in expectation, harmonic new better than used in expectation, new better than used in failure rate, and new better than used in failure rate average are generalized, so as to compare the aging properties of two arbitrary life distributions.  相似文献   

17.
In this article a mixture of discrete lifetime distributions is considered. Sufficient conditions are given for establishing results on the limiting behavior of the failure rate of the mixture. A connection between this limiting behavior and burn in is shown. The limiting behavior of the mean residual life of the mixture is also considered. The mixed Poisson, geometric, negative binomial, and Weibull distributions are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A policy of periodic replacement with minimal repair at failure is considered for a complex system. Under such a policy the system is replaced at multiples of some period T while minimal repair is performed at any intervening system failures. The cost of a minimal repair to the system is assumed to be a nonde-creasing function of its age. A simple expression is derived for the expected minimal repair cost in an interval in terms of the cost function and the failure rate of the system. Necessary and sufficient conditions for the existence of an optimal replacement interval are exhibited in the case where the system life distribution is strictly increasing failure rate (IFR).  相似文献   

19.
By running life tests at higher stress levels than normal operating conditions, accelerated life testing (ALT) quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant‐stress testing, a unit is tested at a fixed stress level until failure or the termination time point of test, whereas step‐stress testing allows the experimenter to gradually increase the stress levels at some prefixed time points during the test. In this work, the optimal k‐level constant‐stress and step‐stress ALTs are compared for the exponential failure data under complete sampling and Type‐I censoring. The objective is to quantify the advantage of using the step‐stress testing relative to the constant‐stress one. Assuming a log‐linear life–stress relationship with the cumulative exposure model for the effect of changing stress in step‐stress testing, the optimal design points are determined under C/D/A‐optimality criteria. The efficiency of step‐stress testing to constant‐stress one is then discussed in terms of the ratio of optimal objective functions based on the information matrix. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   

20.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号