首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

2.
In this article we formulate an analytical model of preventive maintenance and safety stock strategies in a production environment subject to random machine breakdowns. Traditionally, preventive maintenance and safety stocks have been independently studied as two separate strategies for coping with machine breakdowns. Our intent is to develop a unified framework so that the two are jointly considered. We illustrate the trade-off between investing in the two options. In addition, we provide optimality conditions under which either one or both strategies should be implemented to minimize the associated cost function. Specifically, cases with deterministic and exponential repair time distributions are analyzed in detail. We include numerical examples to illustrate the determination of optimal strategies for preventive maintenance and safety stocks. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
We study an assembly system with a single finished product managed using an echelon base‐stock or order‐up‐to policy. Some or all operations have capacity constraints. Excess demand is either backordered in every period or lost in every period. We show that the shortage penalty cost over any horizon is jointly convex with respect to the base‐stock levels and capacity levels. When the holding costs are also included in the objective function, we show that the cost function can be written as a sum of a convex function and a concave function. Throughout the article, we discuss algorithmic implications of our results for making optimal inventory and capacity decisions in such systems.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

4.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   

5.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

6.
The extended economic lot scheduling problem (EELSP) is concerned with scheduling the production of a set of items in a single facility to minimize the long-run average holding, backlogging, and setup costs. Given an efficient cyclic production schedule for the EELSP, called the target schedule, we consider the problem of how to schedule production after a single schedule disruption. We propose a base stock policy, characterized by a base stock vector, that prescribes producing an item until its inventory level reaches the peak inventory of the target schedule corresponding to the item's position in the production sequence. We show that the base stock policy is always successful in recovering the target schedule. Moreover, the base stock policy recovers the target schedule at minimal excess over average cost whenever the backorder costs are proportional to the processing times. This condition holds, for example, when the value of the items is proportional to their processing times, and a common inventory carrying cost and a common service level is used for all the items. Alternatively, the proportionality condition holds if the inventory manager is willing to select the service levels from a certain set that is large enough to guarantee any minimal level of service, and then uses the imputed values for the backorder costs. When the proportionality condition holds we provide a closed-form expression for the total relevant excess over average cost of recovering the target schedule. We assess the performance of the base stock policy when the proportionality condition does not hold through a numerical study, and suggest some heuristic uses of the base stock policy. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A retailer or distributor of finished goods, or the manager of a spare-parts inventory system, must generally forecast the major portion of demand. A specific customer-service level p (fraction of replenishment intervals with no stockout) implies two challenges: achieve the service within a small interval plus or minus, and do so with a minimum-cost investment in inventory. The pth fractile of lead-time demand (LTD) is the reorder point (ROP) for this service measure, and is often approximated by that fractile of a normal distribution. With this procedure, it is easy to set safety stocks for an (s, Q) inventory system. However, Bookbinder and Lordahl [2] and others have identified cases where the normal approximation yields excessive costs and/or lower service than desired. This article employs an order-statistic approach. Using available LTD data, the ROP is simply estimated from one or two of the larger values in the sample. This approach is sufficiently automatic and intuitive for routine implementation in industry, yet is distribution free. The order-statistic method requires only a small amount of LTD data, and makes no assumptions on the form of the underlying LTD distribution, nor even its parameters μ and ρ. We compare the order-statistic approach and the normal approximation, first in terms of customer service and then using a model of expected annual cost. Based upon characteristics of the available LTD data, we suggest a procedure to aid a practitioner in choosine between the normal and order-statistic method. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

10.
The inventory-routing problem is a distribution problem in which each customer maintains a local inventory of a product such as heating oil and consumes a certain amount of that product each day. Given a central supplier, the objective is to minimize the annual delivery costs while attempting to insure that no customer runs out of the commodity at any time. In this article we present a procedure for reducing the long-term version of this problem to a single-period problem, which can be attacked using standard routing algorithms. The reduction procedure involves the definition of single-period costs that reflect long-term costs, the definition of a safety stock level and a specification of the customer subset to be considered during a single period.  相似文献   

11.
We consider a single-item inventory system in which the stock level can increase due to items being returned as well as decrease when demands occur. Returned items can be repaired and then used to satisfy future demand, or they can be disposed of. We identify those inventory levels where disposal is the best policy. It is shown that this problem is equivalent to a problem of controlling a single-server queue. When the return and demand processes are both Poisson, we find the optimal policy exactly. When the demand and return processes are more general, we use diffusion approximations to obtain an approximate model, which is then solved. The approximate model requires only mean and variance data. Besides the optimal policy, the output of the models includes such characteristics as the operating costs, the purchase rate for new items, the disposal rate for returned items and the average inventory level. Several numerical examples are given. An interesting by-product of our investigation is an approximation for the steady-state behavior of the bulk GI/G/1 queue with a queue limit.  相似文献   

12.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

13.
14.
This paper presents a one-period two-echelon inventory model with one warehouse in the first echelon and n warehouses in the second echelon. At the beginning of the period the stock levels at all facilities are adjusted by purchasing or disposing of items at the first echelon, returning or shipping items between the echelons and transshipping items within the second echelon. During the period, demands (which may be negative) are placed on all warehouses in the second echelon and an attempt is made to satisfy shortages either by an expedited shipment from the first echelon to the second echelon or an expedited transshipment within the second echelon. The decision problem is to choose an initial stock level at the first echelon (by a purchase or a disposition) and an initial allocation so as to minimize the initial stock movement costs during the period plus inventory carrying costs and system shortage costs at the end of the period. It is shown that the objective function takes on one of four forms, depending on the relative magnitudes of the various shipping costs. All four forms of the objective function are derived and proven to be convex. Several applications of this general model are considered. We also consider multi-period extensions of the general model and an important special case is solved explicitly.  相似文献   

15.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

16.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

17.
We establish various inventory replenishment policies to solve the problem of determining the timing and number of replenishments. We then analytically compare various models, and identify the best alternative among them based on minimizing total relevant costs. Furthermore, we propose a simple and computationally efficient optimal method in a recursive fashion, and provide two examples for illustration. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 791–806, 1997  相似文献   

18.
A general multiperiod multi-echelon supply system consisting of n facilities each stocking a single product is studied. At the beginning of a period each facility may order stock from an exogenous source with no delivery lag and proportional ordering costs. During the period the (random) demands at the facilities are satisfied according to a given supply policy that determines to what extent stock may be redistributed from facilities with excess stock to those experiencing shortages. There are storage, shortage, and transportation costs. An ordering policy that minimizes expected costs is sought. If the initial stock is sufficiently small and certain other conditions are fulfilled, it is optimal to order up to a certain base stock level at each facility. The special supply policy in which each facility except facility 1 passes its shortages on to a given lower numbered facility called its direct supplier is examined in some detail. Bounds on the base stock levels are obtained. It is also shown that if the demand distribution at facility j is stochastically smaller (“spread” less) than that at another facility k having the same direct supplier and if certain other conditions are fulfilled, then the optimal base stock level (“virtual” stock out probability) at j is less than (greater than) or equal to that at facility k.  相似文献   

19.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   

20.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号