首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article investigates the optimal inventory and admission policies for a “Clicks‐and‐Bricks” retailer of seasonal products that, in addition to selling through its own physical and online stores, also sells through third‐party websites by means of affiliate programs. Through postings on partners' webpages, an affiliate program allows a retailer to attract customers who would otherwise be missed. However, this retailer needs to pay a commission for each sale that originates from the website operators participating in the program. The retailer may also refer online orders to other sources (such as distributors and manufacturers) for fulfillment through a drop‐shipping agreement and thus earns commissions. This would be an option when, for example, the inventories at the physical stores were running low. Therefore, during the selling horizon, the retailer needs to dynamically control the opening/closing of affiliate programs and decide on the fulfillment option for online orders. On the basis of a discrete‐time dynamic programming model, the optimal admission policy of the retailer is investigated in this paper, and the structural properties of the revenue function are characterized. Numerical examples are given to show the revenue impact of optimal admission control. The optimal initial stocking decisions at the physical stores are also studied. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

2.
3.
This paper presents several models for the location of facilities subject to congestion. Motivated by applications to locating servers in communication networks and automatic teller machines in bank systems, these models are developed for situations in which immobile service facilities are congested by stochastic demand originating from nearby customer locations. We consider this problem from three different perspectives, that of (i) the service provider (wishing to limit costs of setup and operating servers), (ii) the customers (wishing to limit costs of accessing and waiting for service), and (iii) both the service provider and the customers combined. In all cases, a minimum level of service quality is ensured by imposing an upper bound on the server utilization rate at a service facility. The latter two perspectives also incorporate queueing delay costs as part of the objective. Some cases are amenable to an optimal solution. For those cases that are more challenging, we either propose heuristic procedures to find good solutions or establish equivalence to other well‐studied facility location problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

4.
This article analyzes the location-allocation problem for distribution from a single fixed origin via transshipment terminals to a continuous uniformly distributed demand. Distribution through terminals concentrates flows on the origin-to-terminal links and transportation economies of scale encourage the use of larger vehicles. Analytical expressions are derived for the optimal terminal locations, the optimal allocation of destinations to terminals, and the optimal transportation cost. Continuous analytic models assume either an allocation, by partitioning the service region into sectors, or terminal locations. This is unlikely to produce an optimal distribution system. The optimal cost is compared to the cost for suboptimal location-allocation combinations. Results indicate that the location decision is not too important if destinations are allocated optimally and that allocation to the nearest terminal may be poor, even with optimal locations. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
In this article we consider a stochastic model for two products which have a single-period inventory structure and which can be used as substitutes for each other should the need arise. Substitution will occur with probability one, but at perhaps a different revenue level. We prove that the expected profit function is concave, allowing us to find optimal stocking levels for the two products. We compare optimum inventory levels for the case of single substitution with that where there is no substitution. It is demonstrated for the case of single substitution that total optimum order quantities can actually increase or decrease with the substitution revenue.  相似文献   

6.
Consider a fleet of vehicles comprised of K1 identical tankers and K2 identical nontankers (small aircraft). Tankers are capable of refueling other tankers as well as nontankers. The problem is to find that refueling sequence of the tankers that maximizes the range simultaneously attainable by all K2 nontankers. A recent paper established that the “unit refueling sequence,” comprised of one tanker refueling at each of K1 refueling operations, is optimal. The same paper also proffered the following conjecture for the case that the number of refueling operations is constrained to be less than the number of tankers: A nonincreasing refueling sequence is optimal. This article proves the conjecture.  相似文献   

7.
Slow-moving items that occasionally exhibit large demand transactions are known as lumpy demand items. In modeling lumpy demand patterns, it is often assumed that the arrival of customer orders follows a Poisson process and that the order sizes are given by the geometric distribution. This gives rise to a stuttering Poisson (sP) model of lumpy demand. If lead times are constant, the result is a stuttering Poisson model of lead-time demand. Heretofore, authors such as Ward [18] and Mitchell, Rappold, and Faulkner [12] have assumed constant lead times and thus stopped at the sP model. We develop this model further by introducing the effect of lead-time variability. For illustration, we use the normal and the gamma distributions as characterizations of lead time. The resulting models of lead-time demand are referred to as the geometric Poisson normal (GPN) and the geometric Poisson gamma (GPG). For both these models, the article derives tractable expressions for calculating probabilities. Errors introduced by using the sP, constant lead-time model instead of the exact, variable lead-time model are also illustrated.  相似文献   

8.
Location models commonly represent demand as discrete points rather than as continuously spread over an area. This modeling technique introduces inaccuracies to the objective function and consequently to the optimal location solution. In this article this inaccuracy is investigated by the study of a particular competitive facility location problem. First, the location problem is formulated over a continuous demand area. The optimal location for a new facility that optimizes the objective function is obtained. This optimal location solution is then compared with the optimal location obtained for a discrete set of demand points. Second, a simple approximation approach to the continuous demand formulation is proposed. The location problem can be solved by using the discrete demand algorithm while significantly reducing the inaccuracies. This way the simplicity of the discrete approach is combined with the approximated accuracy of the continuous-demand location solution. Extensive analysis and computations of the test problem are reported. It is recommended that this approximation approach be considered for implementation in other location models. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
The production-location problem of a profit maximizing firm is considered. A model is developed for a single firm, facing the joint problems of determining the optimal plant location, the optimal input mix, and the optimal plant size. A homothetic production function is used as the model of the production technologies, and the existence of a sequential “separability” between the production, or input mix, problem and the location problem is demonstrated.  相似文献   

10.
Consider an inventory system consisting of two installations, the stocking point and the field. Each period two decisions must be made: how much to order from outside the system and how much to ship to the field. The first decision is made based on the total amounts of stock then at the two installations. Next a forecast of the demand in the current period is sent from the field to the stocking point. Based upon a knowledge of the joint distribution of the forecast and the true demand, and the amounts of stock at the two installations, a decision to ship a certain amount of stock to the field is taken. The goal is to make these two decisions so as to minimize the total n-period cost for the system. Following the factorization idea of Clark and Scarf (1960), the optimal n period ordering and shipping policy, taking into account the accuracy of the demand forecasts, can be derived so as to make the calculation comparable to those required by two single installations.  相似文献   

11.
Among the many tools of the operations researcher is the transportation algorithm which has been used to solve a variety of problems ranging from shipping plans to plant location. An important variation of the basic transportation problem is the transportation problem with stochastic demand or stochastic supply. This paper presents a simple approximation technique which may be used as a starting solution for algorithms that determine exact solutions. The paper indicates that the approximation technique offered here is superior to a starting solution obtained by substituting expected demand for the random variables.  相似文献   

12.
An inventory system is described in which demand information may be incorrectly transmitted from the field to the stocking point. The stocking point employs a forwarding policy which attempts to send out to the field a quantity which, in general, is some function of the observed demand. The optimal ordering rules for the general n-period problem and the steady state case are derived. In addition orderings of the actual reorder points as functions of the errors are presented, as well as some useful economic interpretations and numerical illustrations.  相似文献   

13.
Demand for some items can depend on the inventory level on display, a phenomenon often exploited by marketing researchers and practitioners. The implications of this phenomenon have received scant attention in the context of periodic-review inventory control models. We develop an approach to model periodic-review production/inventory problems where the demand in any period depends randomly, in a very general form, on the starting inventory level. We first obtain a complete analytical solution for a single-period model. We then investigate two multiperiod models, one with lost sales and the other with backlogging, whose optimal policies turn out to be myopic. Some extensions are also discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Although quantity discount policies have been extensively analyzed, they are not well understood when there are many different buyers. This is especially the case when buyers face price‐sensitive demand. In this paper we study a supplier's optimal quantity discount policy for a group of independent and heterogeneous retailers, when each retailer faces a demand that is a decreasing function of its retail price. The problem is analyzed as a Stackelberg game whereby the supplier acts as the leader and buyers act as followers. We show that a common quantity discount policy that is designed according to buyers' individual cost and demand structures and their rational economic behavior is able to significantly stimulate demand, improve channel efficiency, and substantially increase profits for both the supplier and buyers. Furthermore, we show that the selection of all‐units or incremental quantity discount policies has no effect on the benefits that can be obtained from quantity discounts. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

15.
We study the competition problem of purchase and multiretrieval of perishable seasonal produce, where wholesalers purchase and stock their products in the first period, and then retrieve and sell them in subsequent periods. We first consider the duopoly case and assume that the prices are exogenous and fluctuate. In each period, after the price realization, the wholesalers retrieve some stock from their warehouses to satisfy their demands. One wholesaler's unsatisfied customers can switch to another and be satisfied by its left retrieved products. Any unsold retrieved stock has no salvage value and any unsatisfied demand is lost. The unretrieved stock is carried to the next period at a perishable rate. The wholesalers compete for the substitute demand by determining their own purchase and retrieval quantities. We show the existence and uniqueness of a pure-strategy Nash equilibrium, and that the Nash equilibrium strategy has the simple “sell-down-to” structure. We also consider the general N-person game and show the existence of the Nash equilibrium, and characterize the structure of the equilibrium strategy for the symmetric case. In addition, we consider the case with endogenous prices, and show that the problem reduces to a repeated newsvendor game with price and inventory competition. We derive the conditions under which a unique Nash equilibrium exists and characterize the equilibrium strategy. Finally, we conduct numerical studies to examine the impacts of the model parameters on the equilibrium outcomes and to generate managerial insights.  相似文献   

16.
This paper is concerned with the problem of simultaneously setting price and production levels for an exponentially decaying product. Such products suffer a loss in utility which is proportional to the total quantity of stock on hand. A continuous review, deterministic demand model is considered. The optimal ordering decision quantity is derived and its sensitivity to changes in perishability and product price is considered. The joint ordering pricing decision is also computed and consideration of parametric changes of these decisions indicates a non-monotonic response for optimal price to changes in product decay. Issues of market entry and extensions to a model with shortages are also analyzed.  相似文献   

17.
The importance of effective inventory management has greatly increased for many major retailers because of more intense competition. Retail inventory management methods often use assumptions and demand distributions that were developed for application areas other than retailing. For example, it is often assumed that unmet demand is backordered and that demand is Poisson or normally distributed. In retailing, unmet demand is often lost and unobserved. Using sales data from a major retailing chain, our analysis found that the negative binomial fit significantly better than the Poisson or the normal distribution. A parameter estimation methodology that compensates for unobserved lost sales is developed for the negative binomial distribution. The method's effectiveness is demonstrated by comparing parameter estimates from the complete data set to estimates obtained by artificially truncating the data to simulate lost sales. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The applicability of critical path scheduling is limited by the inability of the algorithm to cope with conflicting resource demands. This paper is an assessment of the effectiveness of many of the heuristic extensions to the critical path method which resolve the conflicts that develop between the resources demanded by an activity and those available. These heuristic rules are evaluated on their ability to solve a large multiproject scheduling problem.  相似文献   

19.
Traditional inventory systems treat all demands of a given item equally. This approach is optimal if the penalty costs of all customers are the same, but it is not optimal if the penalty costs are different for different customer classes. Then, demands of customers with high penalty costs must be filled before demands of customers with low penalty costs. A commonly used inventory policy for dealing with demands with different penalty costs is the critical level inventory policy. Under this policy demands with low penalty costs are filled as long as inventory is above a certain critical level. If the inventory reaches the critical level, only demands with high penalty costs are filled and demands with low penalty costs are backordered. In this article, we consider a critical level policy for a periodic review inventory system with two demand classes. Because traditional approaches cannot be used to find the optimal parameters of the policy, we use a multidimensional Markov chain to model the inventory system. We use a sample path approach to prove several properties of this inventory system. Although the cost function is not convex, we can build on these properties to develop an optimization approach that finds the optimal solution. We also present some numerical results. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
This paper analyzes the simultaneous production of market‐specific products tailored to the needs of individual regions and a global product that could be sold in many regions. We assume that the global product costs more to manufacture, but allows the decision concerning the allocation of products to regions to be delayed until after the manufacturing process has been completed. We further assume that there is additional demand after the region allocation but prior to delivery, extending the two‐stage stochastic program with recourse to include additional stochastic demand after the recourse. This scenario arises, for example, when there is additional uncertainty during a delivery delay which might occur with transoceanic shipments. We develop conditions for optimality assuming a single build‐allocate‐deliver cycle and stochastic demand during both the build and deliver periods. The optimal policy calls for the simultaneous production of market‐specific and global products, even when the global product is substantially more costly than the market‐specific product. In addition, we develop bounds on the performance of the optimal policy for the multicycle problem. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 438–461, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号