首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The basic single-product dynamic lot-sizing problem involves determining the optimal batch production schedule to meet a deterministic, discrete-in-time, varying demand pattern subject to linear setup and stockholding costs. The most widely known procedure for deriving the optimal solution is the Wagner-Whitin algorithm, although many other approaches have subsequently been developed for tackling the same problem. The objective of this note is to show how these procedures can readily be adapted when the input is a finite rate production process. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 221–228, 1997  相似文献   

2.
Inventory models of modern production and service operations should take into consideration possible exogenous failures or the abrupt decline of demand resulting from obsolescence. This article analyzes continuous-review versions of the classical obsolescence problem in inventory theory. We assume a deterministic demand model and general continuous random times to obsolescence (“failure”). Using continuous dynamic programming, we investigate structural properties of the problem and propose explicit and workable solution techniques. These techniques apply to two fairly wide (and sometimes overlapping) classes of failure distributions: those which are increasing in failure rate and those which have finite support. Consequently, several specific failure processes in continuous time are given exact solutions. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 757–774, 1997  相似文献   

3.
The Joint Replenishment Problem (JRP) involves production planning for a family of items. The items have a coordinated cost structure whereby a major setup cost is incurred whenever any item in the family is produced, and an item-specific minor setup cost is incurred whenever that item is produced. This paper investigates the performance of two types of cyclical production schedules for the JRP with dynamic demands over a finite planning horizon. The cyclical schedules considered are: (1) general cyclical schedules—schedules where the number of periods between successive production runs for any item is constant over the planning horizon—and (2) power-of-two schedules—a subset of cyclical schedules for which the number of periods between successive setups must be a power of 2. The paper evaluates the additional cost incurred by requiring schedules to be cyclical, and identifies problem characteristics that have a significant effect on this additional cost. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 577–589, 1997.  相似文献   

4.
In this article we try to identify appropriate solution procedures for different types of multiechelon production planning problems. We conduct an extensive computational study on uncapacitated multiechelon production planning problems with serial and assembly types of bill-of-material structures. Problems are formulated as both single-source fixed charge network problems and as multicommodity flow problems with fixed charges. Solution procedures considered are branch and cut, Lagrangean relaxation (for the network formulation), and branch and bound (for the multicommodity formulation). Three hundred problems with various problem structures are tested. Our conclusions suggest the best approach for each type of problem structure. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
Multiple-facility loading (MFL) involves the allocation of products among a set of finite-capacity facilities. Applications of MFL arise naturally in a variety of production scheduling environments. MFL models typically assume that capacity is consumed as a linear function of products assigned to a facility. Product similarities and differences, however, result in capacity-based economies or diseconomies of scope, and thus the effective capacity of the facility is often a (nonlinear) function of the set of tasks assigned to the facility. This article addresses the multiple-facility loading problem under capacity-based economies (and diseconomies) of scope (MFLS). We formulate MFLS as a nonlinear 0–1 mixed-integer programming problem, and we discuss some useful properties. MFLS generalizes many well-known combinatorial optimization problems, such as the capacitated facility location problem and the generalized assignment problem. We also define a tabu-search heuristic and a branch-and-bound algorithm for MFLS. The tabu-search heuristic alternates between two search phases, a regional search and a diversification search, and offers a novel approach to solution diversification. We also report computational experience with the procedures. In addition to demonstrating MFLS problem tractability, the computational results indicate that the heuristic is an effective tool for obtaining high-quality solutions to MFLS. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 229–256, 1997  相似文献   

6.
The problems of labor staffing and scheduling have received substantial attention in the literature. We introduce two new models of the labor staffing and scheduling problems that avoid the limitations of existing models. Collectively, the models have five important attributes. First, both models ensure the delivery of a minimally acceptable level of service in all periods. Second, one model can identify the least expensive way of delivering a specified aggregate level of customer service (the labor staffing problem and a form of labor scheduling problem). Third, the other model can identify the highest level of service attainable with a fixed amount of labor (the other form of the labor scheduling problem). Fourth, the models enable managers to identify the pareto relationship between labor costs and customer service. Fifth, the models allow a degree of control over service levels that is unattainable with existing models. Because of these attributes, which existing models largely do not possess, we expect these models to have broad applicability in a wide range of organizations operating in both competitive and noncompetitive environments. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 719–740, 1997  相似文献   

7.
We consider a version of the famous bin-packing problem where the cost of a bin is a concave function of the number of items in the bin. We analyze the problem from an average-case point of view and develop techniques to determine the asymptotic optimal solution value for a variety of functions. We also describe heuristic techniques that are asymptotically optimal. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 673–686, 1997  相似文献   

8.
This paper addresses the routing problem with reliability requirements in packet-switched communication networks. In this problem, two classes of communicating node pairs are considered: less critical and highly critical node pairs. We develop a model which identifies a primary route for each less critical node pair and both a primary and a secondary (back up) route for each highly critical node pair. The objective is to minimize the average delay encountered by messages. A solution procedure based on a relaxation of the problem is presented. Computational results over a wide range of problem structures show that the procedure is very effective. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44 : 485–505, 1997  相似文献   

9.
The problem of determining the sample sizes in various strata when several characteristics are under study is formulated as a nonlinear multistage decision problem. Dynamic programming is used to obtain an integer solution to the problem. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
When locating facilities over the earth or in space, a planar location model is no longer valid and we must use a spherical surface. In this article, we consider the one-and two-center problems on a sphere that contains n demand points. The problem is to locate facilities to minimize the maximum distance from any demand point to the closest facility. We present an O(n) algorithm for the one-center problem when a hemisphere contains all demand points and also give an O(n) algorithm for determining whether or not the hemisphere property holds. We present an O(n3 log n) algorithm for the two-center problem for arbitrarily located demand points. Finally, we show that for general p, the p center on a sphere problem is NP-hard. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 341–352, 1997  相似文献   

11.
A polling system comprising n queues and a single server is considered. Service is performed according to an elevator scheme under the globally gated regime. The problem of arranging the channels to minimize a measure of the variability of the waiting times is addressed. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 605–611, 1997  相似文献   

12.
We examine the setup and improvement policies for a production process with multiple performance states. Assume that the production process deteriorates randomly over time, following a Markovian process with known transition probabilities. In order to reduce the production cost incurred because of process deterioration, the process is inspected at the end of each period. Then one of three actions may be taken: do nothing, perform routine process setup, or perform routine setup and process improvement. The routine setup operation returns the process to its best performance state, whereas the process improvement action may reduce future production and setup costs and improve the process-state transition probabilities. A discounted Markovian model is formulated to find the strategy that minimizes the total cost of operating the production process. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 383–400, 1997  相似文献   

13.
This paper formulates a problem of continuous quality production and maintenance of a machine. Quality is assumed to be a known function of the machine's (Markov diffusion process) degradation states. Applications to a specific quality function are used to obtain analytical solutions to an open-loop and feedback stochastic control maintenance problem.  相似文献   

14.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   

15.
We establish various inventory replenishment policies to solve the problem of determining the timing and number of replenishments. We then analytically compare various models, and identify the best alternative among them based on minimizing total relevant costs. Furthermore, we propose a simple and computationally efficient optimal method in a recursive fashion, and provide two examples for illustration. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 791–806, 1997  相似文献   

16.
We study unreliable serial production lines with known failure probabilities for each operation. Such a production line consists of a series of stations, existing machines, and optional quality control stations (QCSs). Our aim is to decide on the allocation of the QCSs within the assembly line, so as to maximize the expected profit of the system. In such a problem, the designer has to determine the QCS configuration and the production rate simultaneously. The profit maximization problem is approximated assuming exponentially distributed processing times, Poisson arrival process of jobs into the system, and the existing of holding costs. The novel feature of our model is the incorporation of holding costs that significantly complicated the problem. Our approximation approach uses a branch and bound strategy that employs our fast dynamic programming algorithm for minimizing the expected operational costs for a given production rate as a subroutine. Extensive numerical experiments are conducted to demonstrate the efficiency of the branch and bound procedure for solving large scale instances of the problem and for obtaining some qualitative insights.

17.
We consider the component testing problem of a system where the main feature is that the component failure rates are not constant parameters, but they change in a dynamic fashion with respect to time. More precisely, each component has a piecewise-constant failure-rate function such that the lifetime distribution is exponential with a constant rate over local intervals of time within the overall mission time. There are several such intervals, and the rates change dynamically from one interval to another. We note that these lifetime distributions can also be used in a more general setting to approximate arbitrary lifetime distributions. The optimal component testing problem is formulated as a semi-infinite linear program. We present an algorithmic procedure to compute optimal test times based on the column-generation technique and illustrate it with a numerical example. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 187–197, 1997  相似文献   

18.
This article addresses a common misconception concerning production lead time and the use of inventory to meet seasonal demand for products with limited shelf lives. Two fundamental questions are answered: 1) Under what conditions will an increase in product life lead to increased ability to meet demand? 2) Under what conditions will increased levels of starting inventory be beneficial? The results of this analysis assisted a plastics manufacturing firm in making product pricing and inventory decisions. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44 : 473–483, 1997  相似文献   

19.
The paper considers the economic lot scheduling problem (ELSP) where production facility is assumed to deteriorate, owing to aging, with an increasing failure rate. The time to shift from an “in‐control” state to an “out‐of‐control” state is assumed to be normally distributed. The system is scheduled to be inspected at the end of each production lot. If the process is found to be in an “out‐of‐control” state, then corrective maintenance is performed to restore it to an “in‐control” state before the start of the next production run. Otherwise, preventive maintenance is carried out to enhance system reliability. The ELSP is formulated under the capacity constraint taking into account the quality related cost due to possible production of non‐conforming items, process inspection, and maintenance costs. In order to find a feasible production schedule, both the common cycle and time‐varying lot sizes approaches are utilized. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 650–661, 2003  相似文献   

20.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号