首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A special case of the two-machine flow-shop total tardiness problem is defined by assuming that the first machine is dedicated to preprocessing and that the second machine performs the main operation, which is longer than preprocessing for each job. It is also assumed that customer orders (jobs) contain varying numbers of otherwise similar parts; therefore orders with longer main processing times have longer preprocessing times as well. The new problem (F2/ppc/T ) is solved by exploiting its structure and its relationship to the single-machine (1//T ) and the two-machine flow-shop (F2//T¯) total tardiness problems. It is shown that shortest-processing-time ordering minimizes the average job completion time in the F2/ppc/T setting. This result leads to the development of dominance conditions to determine a priori the order of some jobs in an optimal F2/ppc/T sequence. These dominance conditions are then embedded in a branch-and-bound algorithm, which is shown to be computationally efficient. A polynomial-time heuristic is also developed for F2/ppc/T . It is concluded that the additional structure of F2/ppc/T (compared to the general F2//T problem) results in highly efficient solution algorithms for it. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The concept of parallel operations has been widely used in manufacturing and data processing. However, not many efficient methods have been proposed to reduce job tardiness. This article proposes an efficient heuristic to minimize the mean tardiness of a set of tasks with known processing times and due dates for single and m parallel machines. For the single-machine case, the proposed heuristic is compared with the well-known Wilkerson and Irwin algorithm; for the m parallel machine case, it is compared with an extension of the Wilkerson-Irwin algorithm. We also introduce a simple dispatching rule, and it is compared with some existing dispatching rules. The comprehensive simulation results show that the proposed heuristic performs better than the Wilkerson-Irwin algorithm at a significantly reduced computational time.  相似文献   

3.
We consider a single-machine scheduling problem with the objective of minimizing the mean (or equivalently, total) tardiness and earliness when due dates may differ among jobs. Some properties of the optimal solution are discussed, and these properties are used to develop both optimal and heuristic algorithms. Results of computational tests indicate that optimal solutions can be found for problems with up to 20 jobs, and that two of the heuristic procedures provide optimal or very near optimal solutions in many instances. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Kanet addressed the problem of scheduling n jobs on one machine so as to minimize the sum of absolute lateness under a restrictive assumption on their common due date. This article extends the results to the problem of scheduling n jobs on m parallel identical processors in order to minimize the sum of absolute lateness. Also, a heuristic algorithm for a more general version with no restriction on the common due date, for the problem of n-job single-machine scheduling is presented and its performance is reported.  相似文献   

5.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

6.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

7.
We consider the problem of sequencing n jobs on a single machine, with each job having a processing time and a common due date. The common due date is assumed to be so large that all jobs can complete by the due date. It is known that there is an O(n log n)‐time algorithm for finding a schedule with minimum total earliness and tardiness. In this article, we consider finding a schedule with dual criteria. The primary goal is to minimize the total earliness and tardiness. The secondary goals are to minimize: (1) the maximum earliness and tardiness; (2) the sum of the maximum of the squares of earliness and tardiness; (3) the sum of the squares of earliness and tardiness. For the first two criteria, we show that the problems are NP‐hard and we give a fully polynomial time approximation scheme for both of them. For the last two criteria, we show that the ratio of the worst schedule versus the best schedule is no more than . © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 422–431, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10020  相似文献   

8.
In this paper, we study the problem of scheduling quay cranes (QCs) at container terminals where incoming vessels have different ready times. The objective is to minimize the maximum relative tardiness of vessel departures. The problem can be formulated as a mixed integer linear programming (MILP) model of large size that is difficult to solve directly. We propose a heuristic decomposition approach to breakdown the problem into two smaller, linked models, the vessel‐level and the berth‐level models. With the same berth‐level model, two heuristic methods are developed using different vessel‐level models. Computational experiments show that the proposed approach is effective and efficient. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

9.
We consider the problem of scheduling a set of jobs with a common due-date on a single-machine where the release time of a job is related to the amount of resource consumed. The objective is to minimize the total resource consumption and the total tardiness. While the problem is strongly NP-hard in general, we discuss two different special cases for which special properties are identified and used to develop efficient pseudo-polynomial time algorithms. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
We consider sequencing n jobs on a single machine subject to job completion times arising from either machine breakdowns or other causes. The objective is to minimize an expected weighted combination of due dates, completion times, earliness, and tardiness penalties. The determination of optimal distinct due dates or optimal common due dates for a given schedule is investigated. The scheduling problem for a fixed common due date is considered when random completion times arise from machine breakdowns. The optimality of a V-shaped about (a point) T sequence is established when the number of machine breakdowns follows either a Poisson or a geometric distribution and the duration of a breakdown has an exponential distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
In this article the problem of minimizing the mean absolute deviation (MAD) of job completion times about an unrestricted given common due date with tolerance in the n-job, single-machine scheduling environment is considered. We describe some optimality conditions and show that the unrestricted version of the MAD problem with an arbitrary due date tolerance is polynomial by proposing a polynomial-time algorithm for identifying an optimal schedule. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
This article considers the single-machine dynamic scheduling problem where the jobs have different arrival times and the objective is to minimize the sum of completion times. This problem is known to be strongly NP-hard. We develop decomposition results for this problem such that a large problem can be solved by combining optimal solutions for several smaller problems. The decomposition results can be used with any implicit enumeration method to develop an optimal algorithm. Our computational experiment indicates that the computational efficiency of the currently best available branch-and-bound algorithm can be improved with the use of our decomposition results. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
This paper analyzes the Smith-heuristic for the single-machine scheduling problem where the objective is to minimize the total weighted completion time subject to the constraint that the tradiness for any job does not exceed a prespecified maximum allowable tardiness. We identify several cases of this problem for which the Smith-heuristic is guaranteed to lead to optimal solutions. We also provide a worst-case analysis of the Smith-heuristic; the analysis shows that the fractional increase in the objective function value for the Smith-heuristic from the optimal solution is unbounded in the worst case.  相似文献   

14.
In this article we consider a version of the vehicle-routing problem (VRP): A fleet of identical capacitated vehicles serves a system of one warehouse and N customers of two types dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to the warehouse, or both. The objective is to design a set of routes of minimum total length to serve all customers, without violating the capacity restriction of the vehicles along the routes. The capacity restriction here, in contrast to the VRP without back hauls is complicated because amount of capacity used depends on the order the customers are visited along the routes. The problem is NP-hard. We develop a lower bound on the optimal total cost and a heuristic solution for the problem. The routes generated by the heuristic are such that the back-haul customers are served only after terminating service to the delivery customers. However, the heuristic is shown to converge to the optimal solution, under mild probabilistic conditions, as fast as N−0.5. The complexity of the heuristic, as well as the computation of the lower bound, is O(N3) if all customers have unit demand size and O(N3 log N) otherwise, independently of the demand sizes. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
We study the scheduling situation in which a set of jobs subjected to release dates and deadlines are to be performed on a single machine. The objective is to minimize a piecewise linear objective function ∑jFj where Fj(Cj) corresponds to the cost of the completion of job j at time Cj. This class of function is very large and thus interesting both from a theoretical and practical point of view: It can be used to model total (weighted) completion time, total (weighted) tardiness, earliness and tardiness, etc. We introduce a new Mixed Integer Program (MIP) based on time interval decomposition. Our MIP is closely related to the well‐known time‐indexed MIP formulation but uses much less variables and constraints. Experiments on academic benchmarks as well as on real‐life industrial problems show that our generic MIP formulation is efficient. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

17.
Given a set of jobs, a processing time and a weight for each job, several parallel and identical machines, and a common due date that is not too early to constrain the scheduling decision, we want to find an optimal job schedule so as to minimize the maximum weighted absolute lateness. We show that this problem is NP-complete even for the single-machine case, and is strongly NP-complete for the general case. We present a polynomial time heuristic for this problem and analyze its worst-case performance. Empirical testing of the heuristic is reported, and the results suggest that the performance is asymptotically optimal as the number of jobs tends to infinity. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
《防务技术》2014,10(1):28-33
A differential/integral method to estimate the kinetic parameters (apparent activation energy Ea and pre-exponential factor A) for thermal decomposition reaction of energetic materials based on Kooij formula are applied to study the nonisothermal decomposition reaction kinetics of hexanitrohexaazaisowurtzitane (HNIW) by analyzing nonisothermal DSC curve data. The apparent activation energy (Ea) obtained by the integral isoconversional non-isothermal method based on Kooij formula is used to check the constancy and validity of apparent activation energy by the differential/integral method based on Kooij formula. The most probable mechanism function of thermal decomposition reaction of HNIW is determined by a logical choice method. The equations for calculating the critical temperatures of thermal explosion (Tb) and adiabatic time-to-explosion (tTIad) based on Kooij formula are used to calculate the values of Tb and tTIad to evaluate the thermal safety and heat-resistant ability of HNIW. All the original data needed for analyzing the kinetic parameters are from nonisothermal DSC curves. The results show that the kinetic model function in differential form and the values of Ea and A of decomposition reaction of HNIW are 3(1 − α)[−ln(1 − α)]2/3, 152.73 kJ mol−1 and 1011.97 s−1, respectively, and the values of self-accelerating decomposition temperature (TSADT), Tb and tTIad are 486.55 K, 493.11 K and 52.01 s, respectively.  相似文献   

19.
We consider the problem of scheduling multiprocessor tasks with prespecified processor allocations to minimize the total completion time. The complexity of both preemptive and nonpreemptive cases of the two-processor problem are studied. We show that the preemptive case is solvable in O(n log n) time. In the nonpreemptive case, we prove that the problem is NP-hard in the strong sense, which answers an open question mentioned in Hoogeveen, van de Velde, and Veltman (1994). An efficient heuristic is also developed for this case. The relative error of this heuristic is at most 100%. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 231–242, 1998  相似文献   

20.
Previous research on the scheduling of multimachine systems has generally focused on the optimization of individual performance measures. This article considers the sequencing of jobs through a multimachine flow shop, where the quality of the resulting schedule is evaluated according to the associated levels of two scheduling criteria, schedule makespan (Cmax) and maximum job tardiness (Tmax). We present constructive procedures that quantify the trade-off between Cmax and Tmax. The significance of this trade-off is that the optimal solution for any preference function involving only Cmax and Tmax must be contained among the set of efficient schedules that comprise the trade-off curve. For the special case of two-machine flow shops, we present an algorithm that identifies the exact set of efficient schedules. Heruistic procedures for approximating the efficient set are also provided for problems involving many jobs or larger flow shops. Computational results are reported for the procedures which indicate that both the number of efficient schedules and the error incurred by heuristically approximating the efficient set are quite small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号