首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bounds for P(X + X ⩽ k2σ) are given where X1 and X2 are independent normal variables having zero means and variances σ, σ, respectively. This is generalized when X1 and X2 are dependent variables with known covariance matrix.  相似文献   

2.
Let YiNi, σ), i = 1, …, p, be independently distributed, where θi and σ are unknown. A Bayesian approach is used to estimate the first two moments of the minimum order statistic, W = min (Y1, …, Yp). In order to compute the Bayes estimates, one has to evaluate the predictive densities of the Yi's conditional on past data. Although the required predictive densities are complicated in form, an efficient algorithm to calculate them has been developed and given in the article. An application of the Bayesian method in a continuous-review control model with multiple suppliers is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
This paper analyses the E/M/c queueing system and shows how to calculate the expected number in the system, both at a random epoch and immediately preceding an arrival. These expectations are expressed in terms of certain initial probabilities which are determined by linear equations. The advantages and disadvantages of this method are also discussed.  相似文献   

4.
Variations of Hale's channel assignment problem, the L(j, k)‐labeling problem and the radio labeling problem require the assignment of integers to the vertices of a graph G subject to various distance constraints. The λj,k‐number of G and the radio number of G are respectively the minimum span among all L(j, k)‐labelings, and the minimum span plus 1 of all radio labelings of G (defined in the Introduction). In this paper, we establish the λj,k‐number of ∏ K for pairwise relatively prime integers t1 < t2 < … < tq, t1 ≥ 2. We also show the existence of an infinite class of graphs G with radio number |V(G)| for any diameter d(G). © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

5.
We consider single-server queueing systems with the queue discipline “first come, first served,” interarrival times {uk, k ≥ l}, and service times {uk, k ≥ l}, where the {uk} and {uk} are independent sequences of non-negative random variables that are independently but not necessarily identically distributed. Let Xk = uk − uk (k ≥ 1), S0 0, Sn = X1 + X2 … + Xn(n≥1). It is known that the (possibly nonhomogeneous) random walk {Sn} determines the behavior of the system. In this paper we make stochastic comparisons of two such systems σ12 whose basic random variables X and X are stochastically ordered. The corresponding random walks are also similarly ordered, and this leads to stochastic comparisons of idle times, duration of busy period and busy cycles, number of customers served during a busy period, and output from the system. In the classical case of identical distributions of {uk} and {uk} we obtain further comparisons. Our results are for the transient behavior of the systems, not merely for steady state.  相似文献   

6.
We consider a make‐to‐order production system where two major components, one nonperishable (referred to as part 1) and one perishable (part 2), are needed to fulfill a customer order. In each period, replenishment decisions for both parts need to be made jointly before demand is realized and a fixed ordering cost is incurred for the nonperishable part. We show that a simple (sn,S,S) policy is optimal. Under this policy, S along with the number of backorders at the beginning of a period if any and the availability of the nonperishable part (part 1) determines the optimal order quantity of the perishable part (part 2), while (sn,S) guide when and how much of part 1 to order at each state. Numerical study demonstrates that the benefits of using the joint replenishment policy can be substantial, especially when the unit costs are high and/or the profit margin is low. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

7.
Non‐preemptive scheduling of n independent jobs on m unrelated machines so as to minimize the maximal job completion time is considered. A polynomial algorithm with the worst‐case absolute error of min{(1 ? 1/m)pmax, p} is presented, where pmax is the largest job processing time and p is the mth element from the non‐increasing list of job processing times. This is better than the earlier known best absolute error of pmax. The algorithm is based on the rounding of acyclic multiprocessor distributions. An O(nm2) algorithm for the construction of an acyclic multiprocessor distribution is also presented. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

8.
Consider a set of vertices V = {1, 2,…, n} placed on a two-dimensional Euclidean plane R2 with each vertex attached a nonnegative weight w: VR. For a given constant d>0, the geometric graph G = (V, E) is defined to have edge set E = {(i, j): dijd} with dij being the Euclidean distance between vertices i and j. The geometric vertex packing (GVP) problem, which is often called the independent set problem, is defined as selecting the set of pairwise nonadjacent vertices with maximum total weight. We limit our attention to the special case that no vertex is within a distance βd of any other vertices where 0 ⩽ β < 1. A special value of β (= 1/2) is referred to frequently because of its correspondence to a manufacturing problem in circuit board testing. In this article we show that the weighted vertex packing problem for the specially structured geometric graph (SGVP) defined with the above restriction is NP-complete even for the case that all vertex weights are unity and for any β. Polynomial procedures have been designed for generating cuts to obtain tight LP upper bounds for the SGVP. Two heuristics with bounded worst-case performance are applied to the LP solution to produce a feasible solution and a lower bound. We then use a branch-and-bound procedure to solve the problem to optimality. Computational results on large-scale SGVP problems will be discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
A unifying survey of the literature related to the knapsack problem; that is, maximize \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_i {v_i x_{i,} } $\end{document}, subject to \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_j {w_i x_i W} $\end{document} and xi ? 0, integer; where vi, wi and W are known integers, and wi (i = 1, 2, …, N) and W are positive. Various uses, including those in group theory and in other integer programming algorithms, as well as applications from the literature, are discussed. Dynamic programming, branch and bound, search enumeration, heuristic methods, and other solution techniques are presented. Computational experience, and extensions of the knapsack problem, such as to the multi-dimensional case, are also considered.  相似文献   

10.
Let Xi be independent IFR random variables and let Yi be independent exponential random variables such that E[Xi]=E[Yi] for all i=1, 2, ? n. Then it is well known that E[min (Xi)] ≥E[min (Xi)]. Nevertheless, for 1≤i≤n exponentially distributed Xi's and for a decreasing convex function ?(.). it is shown that .  相似文献   

11.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

12.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

13.
We consider a class of production scheduling models with m identical machines in parallel and k different product types. It takes a time pi to produce one unit of product type i on any one of the machines. There is a demand stream for product type i consisting of ni units with each unit having a given due date. Before a machine starts with the production of a batch of products of type i a setup cost c is incurred. We consider several different objective functions. Each one of the objective functions has three components, namely a total setup cost, a total earliness cost, and a total tardiness cost. In our class of problems we find a relatively large number of problems that can be solved either in polynomial time or in pseudo‐polynomial time. The polynomiality or pseudo‐polynomiality is achieved under certain special conditions that may be of practical interest; for example, a regularity pattern in the string of due dates combined with earliness and tardiness costs that are similar for different types of products. The class of models we consider includes as special cases discrete counterparts of a number of inventory models that have been considered in the literature before, e.g., Wagner and Whitin (Manage Sci 5 (1958), 89–96) and Zangwill (Oper Res 14 (1966), 486–507; Manage Sci 15 (1969), 506–527). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

14.
Let {Xi} be independent HNBUE (Harmonic New Better Than Used in Expectation) random variables and let {Yi} be independent exponential random variables such that E{Xi}=E{Yi} It is shown that \documentclass{article}\pagestyle{empty}\begin{document}$ E\left[{u\left({\mathop {\min \,X_i}\limits_{l \le i \le n}} \right)} \right] \ge E\left[{u\left({\mathop {\min \,Y_i}\limits_{l \le i \le n}} \right)} \right] $\end{document} for all increasing and concave u. This generalizes a result of Kubat. When comparing two series systems with components of equal cost, one with lifetimes {Xi} and the other with lifetimes {Yi}, it is shown that a risk-averse decision-maker will prefer the HNBUE system. Similar results are obtained for parallel systems.  相似文献   

15.
Let us assume that observations are obtained at random and sequentially from a population with density function In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions Where δ(XI,…,XN) is a suitable estimator of μ based on the random sample (X1,…, XN), N is a stopping variable, and A and p are given constants. To study the performance of the rule it is compared with corresponding “optimum fixed sample procedures” with known σ by comparing expected sample sizes and expected costs. It is shown that the rule is “asymptotically efficient” when absolute loss (p=-1) is used whereas the one based on squared error (p = 2) is not. A table is provided to show that in small samples similar conclusions are also true.  相似文献   

16.
This paper considers the problem of the optimal redeployment of a resource among different geographical locations. Initially, it is assumed that at each location i, i = 1,…, n, the level of availability of the resource is given by a1 ≧ 0. At time t > 0, requirements Rf(t) ≧ 0 are imposed on each location which, in general, will differ from the a1. The resource can be transported from any one location to any other in magnitudes which will depend on t and the distance between these locations. It is assumed that ΣRj > Σat The objective function consideis, in addition to transportation costs incurred by reallocation, the degree to which the resource availabilities after redeployment differ from the requirements. We shall associate the unavailabilities at the locations with the unreadiness of the system and discuss the optimal redeployment in terms of the minimization of the following functional forms: \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj) + } $\end{document} transportation costs, Max \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {Max}\limits_j \,[kj(Rj - yj)] + $\end{document} transportation costs, and \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj)^2 + } $\end{document} transportation costs. The variables yj represent the final amount of the resource available at location j. No benefits are assumed to accrue at any location if yj > Rj. A numerical three location example is given and solved for the linear objective.  相似文献   

17.
For nonnegative integers d1, d2, and L(d1, d2)‐labeling of a graph G, is a function f : V(G) → {0, 1, 2, …} such that |f(u) − f(v)| ≥ di whenever the distance between u and v is i in G, for i = 1, 2. The L(d1, d2)‐number of G, λ(G) is the smallest k such that there exists an L(d1, d2)‐labeling with the largest label k. These labelings have an application to a computer code assignment problem. The task is to assign integer “control codes” to a network of computer stations with distance restrictions, which allow d1d2. In this article, we will study the labelings with (d1, d2) ∈ {(0, 1), (1, 1), (1, 2)}. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
Let be a basic solution to the linear programming problem subject to: where R is the index set associated with the nonbasic variables. If all of the variables are constrained to be nonnegative integers and xu is not an integer in the basic solution, the linear constraint is implied. We prove that including these “cuts” in a specified way yields a finite dual simplex algorithm for the pure integer programming problem. The relation of these modified Dantzig cuts to Gomory cuts is discussed.  相似文献   

19.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

20.
Suppose x1, x2, … are independently distributed random variables with Pr (xi = 1) = Pr(xi = ?1) = 1/2, and let sn =

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号