首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article studies the classical single‐item economic lot‐sizing problem with constant capacities, fixed‐plus‐linear order costs, and concave inventory costs, where backlogging is allowed. We propose an O(T3) optimal algorithm for the problem, which improves upon the O(T4) running time of the famous algorithm developed by Florian and Klein (Manage Sci18 (1971) 12–20). Instead of using the standard dynamic programming approach by predetermining the minimal cost for every possible subplan, we develop a backward dynamic programming algorithm to obtain a more efficient implementation. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

2.
Manufacturing and service organizations routinely face the challenge of scheduling jobs, orders, or individual customers in a schedule that optimizes either (i) an aggregate efficiency measure, (ii) a measure of performance balance, or (iii) some combination of these two objectives. We address these questions for single-machine job scheduling systems with fixed or controllable due dates. We show that a large class of such problems can be optimized by solving either a single instance or a finite sequence of instances of the so-called (SQC) problem, in which the sum of general quasiconvex functions of the jobs' completion times is to be minimized. To solve a single instance of (SQC), we develop an efficient, though pseudopolynomial algorithm, based on dynamic programming. The algorithm generates a solution that is optimal among all schedules whose starting time is restricted to the points of a prespecified (arbitrary) grid. The algorithm is embedded in an iterative procedure, where in each iteration a specific instance of (SQC) is solved. Special attention is given to the simultaneous minimization of the mean and variance of completion times. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

4.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

5.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
This article presents research designed to aid firms who assemble many components into a final product. We assume that purchase quantities are fixed, and that all parts and components are assembled at one stage in a short time. Demand for the final product is represented by a stationary independent and identically distributed random variable; and unmet demand is backordered. Ordering is done on a periodic review basis. We develop infinite horizon, approximate expected cost, and expected service level functions, and we present an algorithm for finding approximately minimum cost reorder points for each part subject to a service level constraint. Extensive results on the accuracy of the approximations are presented. Due to the size of the problem, we present only limited results on the performance of the optimization algorithm.  相似文献   

7.
We develop a robust queueing network analyzer algorithm to approximate the steady-state performance of a single-class open queueing network of single-server queues with Markovian routing. The algorithm allows nonrenewal external arrival processes, general service-time distributions and customer feedback. The algorithm is based on a decomposition approximation, where each flow is partially characterized by its rate and a continuous function that measures the stochastic variability over time. This function is a scaled version of the variance-time curve, called the index of dispersion for counts (IDC). The required IDC functions for the external arrival processes can be calculated from the model primitives or estimated from data. Approximations for the IDC functions of the internal flows are calculated by solving a set of linear equations. The theoretical basis is provided by heavy-traffic limits for the flows established in our previous papers. A robust queueing technique is used to generate approximations of the mean steady-state performance at each queue from the IDC of the total arrival flow and the service specification at that queue. The algorithm's effectiveness is supported by extensive simulation studies.  相似文献   

8.
In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)εIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal-dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal-dual algorithm solves a sequence of related maximum flow problems. The primal-dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal-dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.  相似文献   

9.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

10.
We develop a simple O(n log n) solution method for the standard lot-sizing model with backlogging and a study horizon of n periods. Production costs are fixed plus linear and holding and backlogging costs are linear with general time-dependent parameters. The algorithm has linear [O(n)] time complexity for several important subclasses of the general model. We show how a slight adaptation of the algorithm can be used for the detection of a minimal forecast horizon and associated planning horizon. The adapted algorithm continues to have complexity O(n log n) or O(n) for the above-mentioned subclasses of the general model. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
A method previously devised for the solution of the p-center problem on a network has now been extended to solve the analogous minimax location-allocation problem in continuous space. The essence of the method is that we choose a subset of the n points to be served and consider the circles based on one, two, or three points. Using a set-covering algorithm we find a set of p such circles which cover the points in the relaxed problem (the one with m < n points). If this is possible, we check whether the n original points are covered by the solution; if so, we have a feasible solution to the problem. We now delete the largest circle with radius rp (which is currently an upper limit to the optimal solution) and try to find a better feasible solution. If we have a feasible solution to the relaxed problem which is not feasible to the original, we augment the relaxed problem by adding a point, preferably the one which is farthest from its nearest center. If we have a feasible solution to the original problem and we delete the largest circle and find that the relaxed problem cannot be covered by p circles, we conclude that the latest feasible solution to the original problem is optimal. An example of the solution of a problem with ten demand points and two and three service points is given in some detail. Computational data for problems of 30 demand points and 1–30 service points, and 100, 200, and 300 demand points and 1–3 service points are reported.  相似文献   

12.
We present a service constrained (Q, r) model that minimizes expected holding and ordering costs subject to an upper bound on the expected waiting time of demands that are actually backordered. We show that, after optimizing over r, the average cost is quasiconvex in Q for logconcave continuous lead time demand distributions. For logconcave discrete lead time demand distributions we find a single‐pass efficient algorithm based on a novel search stopping criterion. The algorithm also allows for bounds on the variability of the service measure. A brief numerical study indicates how the bounds on service impact the optimal average cost and the optimal (Q, r) choice. The discrete case algorithm can be readily adapted to provide a single pass algorithm for the traditional model that bounds the expected waiting time of all demands (backordered or not). © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 557–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10028  相似文献   

13.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

14.
This article presents a new approach to solve the problem of coordinating the overhaul scheduling of several nonidentical production units. For each production unit, we assume that the operating cost is an n-order polynomial function of the time elapsed since its previous overhaul. We develop an efficient iterative algorithm that generates a near-optimal cyclic overhaul schedule. We also construct a simple algorithm for the case where the overhaul interval for each production unit and the cycle time are restricted to be power-of-two multiples of some base planning period. Finally, we provide a worst-case performance bound for the solution to the problem under the power-of-two restriction. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
We consider a robust shortest path problem when the cost coefficient is the product of two uncertain factors. We first show that the robust problem can be solved in polynomial time by a dual‐variable enumeration with shortest path problems as subproblems. We also propose a path enumeration approach using a K ‐shortest paths finding algorithm that may be efficient in many real cases. An application in hazardous materials transportation is discussed, and the solution methods are illustrated by numerical examples. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

16.
We consider the parallel replacement problem in which machine investment costs exhibit economy of scale which is modeled through associating both fixed and variable costs with machine investment costs. Both finite- and infinite-horizon cases are investigated. Under the three assumptions made in the literature on the problem parameters, we show that the finite-horizon problem with time-varying parameters is equivalent to a shortest path problem and hence can be solved very efficiently, and give a very simple and fast algorithm for the infinite-horizon problem with time-invariant parameters. For the general finite-horizon problem without any assumption on the problem parameters, we formulate it as a zero-one integer program and propose an algorithm for solving it exactly based on Benders' decomposition. Computational results show that this solution algorithm is efficient, i.e., it is capable of solving large scale problems within a reasonable cpu time, and robust, i.e., the number of iterations needed to solve a problem does not increase quickly with the problem size. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 279–295, 1998  相似文献   

17.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

18.
We consider the problem of finding the Kth shortest path for a time‐schedule network, where each node in the network has a list of prespecified departure times, and departure from the node can take place only at one of these departure times. We develop a polynomial time algorithm independent of K for finding the Kth shortest path. The proposed algorithm constructs a map structure at each node in the network, using which we can directly find the Kth shortest path without having to enumerate the first K − 1 paths. Since the same map structure is used for different K values, it is not necessary to reconstruct the table for additional paths. Consequently, the algorithm is suitable for directly finding multiple shortest paths in the same network. Furthermore, the algorithm is modified slightly for enumerating the first K shortest paths and is shown to have the lowest possible time complexity under a condition that holds for most practical networks. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

19.
We study a knapsack problem with an additional minimum filling constraint, such that the total weight of selected items cannot be less than a given threshold. The problem has several applications in shipping, e‐commerce, and transportation service procurement. When the threshold equals the knapsack capacity, even finding a feasible solution to the problem is NP‐hard. Therefore, we consider the case when the ratio α of threshold to capacity is less than 1. For this case, we develop an approximation scheme that returns a feasible solution with a total profit not less than (1 ‐ ε) times the total profit of an optimal solution for any ε > 0, and with a running time polynomial in the number of items, 1/ε, and 1/(1‐α). © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

20.
This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号