首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A multistate system is assumed to be constantly monitored; i.e., the state of the system is always known with certainty. Damage to the system accumulates via a continuous-time Markov process. A model of the system including restoration costs and state occupation costs is developed. It is shown that under certain conditions the optimal restoration policy for the system is a control limit rule. A control limit rule is a policy which requires restoration of the system whenever the damage exceeds a certain level. Examples are presented to show that there are several situations in which, perhaps surprisingly, control limit rules are not optimal.  相似文献   

2.
We consider an exponential repair model with s machines and one repairman. The machines' failure rates are equal but the repair rate may change from machine to machine. The repairman repairs the failed machines one at a time and in the course of his work he may even interrupt repairing one machine and start another. We compare repair policies and prove an optimality result by means of stochastic order. The proof is based on representing the compared models simultaneously in a special way and comparing then the sample paths of the interesting stochastic processes.  相似文献   

3.
A system receives shocks at random points of time. Each shock causes a random amount of damage which accumulates over time. The system fails when the accumulated damage exceeds a fixed threshold. Upon failure the system is replaced by a new one. The damage process is controlled by means of a maintenance policy. There are M possible maintenance actions. Given that a maintenance action m is employed, then the cumulative damage decreases at rate rm. Replacement costs and maintenance costs are considered. The objective is to determine an optimal maintenance policy under the following optimality criteria: (1) long-run average cost; (2) total expected discounted cost over an infinite horizon. For a diffusion approximation, we show that the optimal maintenance expenditure rate is monotonically increasing in the cumulative damage level.  相似文献   

4.
Jones, Zydiak, and Hopp [1] consider the parallel machine replacement problem (PMRP), in which there are both fixed and variable costs associated with replacing machines. Increasing maintenance cost motivates replacements, and a fixed replacement cost provides incentive for replacing machines of the same age in clusters. They prove two intuitive but important results for finite- or infinite-horizon PMRPs, which significantly reduce the size of the linear programming (LP) formulation of the problem and computing efforts required to obtain an optimal replacement policy. Their results are the no-splitting rule (NSR) and the older cluster replacement rule (OCRR). Under a slightly weaker set of assumptions, we prove a third rule, the all-or-none rule (AONR), which states that in any period, an optimal policy is to keep or to replace all the machines regardless of age. This result further reduces the size of the LP formulation of the PMRP. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
In the framework of a discrete Markov decision process with state information lag, this article suggests a way for selecting an optimal policy using the control limit rule. The properties sufficient for an optimal decision rule to be contained in the class of control limit rules are also studied. The degradation in expected reward from that of the perfect information process provides a measure of the potential value of improving the information system.  相似文献   

6.
The exact expression is derived for the average stationary cost of a (Q,R) inventory system with lost sales, unit Poisson demands, Erlang-distributed lead times, fixed order cost, fixed cost per unit lost sale, linear holding cost per unit time, and a maximum of one order outstanding. Explicit expressions for the state probabilities and a fast method of calculating them are obtained for the case of Q greater than R. Exponential lead times are analyzed as a special case. A simple cyclic coordinate search procedure is used to locate the minimum cost policy. Examples of the effect of lead time variability on costs are given.  相似文献   

7.
We consider a model with M + N identical machines. As many as N of these can be working at any given time and the others act as standby spares. Working machines fail at exponential rate λ, spares fail at exponential rale γ, and failed machines are repaired at exponential rate μ. The control variables are λ. μ, and the number of removable repairman, S, to be operated at any given time. Using the criterion of total expected discounted cost, we show that λ, S, and μ are monotonic functions of the number of failed machines M, N, the discount factor, and for the finite time horizon model, the amount of time remaining.  相似文献   

8.
To reduce the time-to-market of newly developed systems, manufacturers increasingly adopt strategies where systems are brought to market while system field reliability is still uncertain. These systems are typically sold under performance-based contracts, which incentivizes potential customers to invest in them despite reliability uncertainty. Such contracts make the manufacturer (partly) responsible for the availability of the system. Subsequently, when field reliability is lower than anticipated, the manufacturer may choose to redesign the system to avoid high contract penalties. Redesign is a costly effort which may substantially increase field reliability. Deciding when to redesign is challenging, especially because the initial failure rate estimate by the system's engineers is refined over time as failure data accrues. We propose a model that endogenizes the failure rate updating to analyze this tactical redesign decision. We study additive and multiplicative redesigns and show that the optimal policy has a control limit structure. We benchmark our optimal policy against a static counterpart numerically, and conclude that basing redesign decisions on the updated estimate of the failure rate can substantially reduce costs.  相似文献   

9.
We consider a single-item inventory system in which the stock level can increase due to items being returned as well as decrease when demands occur. Returned items can be repaired and then used to satisfy future demand, or they can be disposed of. We identify those inventory levels where disposal is the best policy. It is shown that this problem is equivalent to a problem of controlling a single-server queue. When the return and demand processes are both Poisson, we find the optimal policy exactly. When the demand and return processes are more general, we use diffusion approximations to obtain an approximate model, which is then solved. The approximate model requires only mean and variance data. Besides the optimal policy, the output of the models includes such characteristics as the operating costs, the purchase rate for new items, the disposal rate for returned items and the average inventory level. Several numerical examples are given. An interesting by-product of our investigation is an approximation for the steady-state behavior of the bulk GI/G/1 queue with a queue limit.  相似文献   

10.
The maintenance strategy considered in this article is in the class of block replacement policies. The working unit is replaced by new ones at instants T,2T,3T,… independently of the age and state of the unit. If a failure occurs between these instants, the random repair cost is evaluated. If it is smaller than a predetermined control limit then a minimal repair is carried out. Otherwise the unit is replaced by a used unit. The performance of this maintenance strategy is evaluated in terms of average total cost per time unit over an infinite time span. The mathematical model is defined and several analytical results are obtained. A computer program has been written, which solves the mathematical problem, and some examples are given for the cases where the underlying life distribution is gamma, Weibull or truncated normal.  相似文献   

11.
Traditional inventory systems treat all demands of a given item equally. This approach is optimal if the penalty costs of all customers are the same, but it is not optimal if the penalty costs are different for different customer classes. Then, demands of customers with high penalty costs must be filled before demands of customers with low penalty costs. A commonly used inventory policy for dealing with demands with different penalty costs is the critical level inventory policy. Under this policy demands with low penalty costs are filled as long as inventory is above a certain critical level. If the inventory reaches the critical level, only demands with high penalty costs are filled and demands with low penalty costs are backordered. In this article, we consider a critical level policy for a periodic review inventory system with two demand classes. Because traditional approaches cannot be used to find the optimal parameters of the policy, we use a multidimensional Markov chain to model the inventory system. We use a sample path approach to prove several properties of this inventory system. Although the cost function is not convex, we can build on these properties to develop an optimization approach that finds the optimal solution. We also present some numerical results. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
针对装备保障中维修调度对装备训练及可靠性的影响,将支队级修理所保障多艘舰船维修工作的情况抽象为单一维修台保障多个系统的维修力量调度分配,引入修理工可变休假策略对其进行描述,以装备结构中常见的n中取k系统为研究对象,针对以往研究利用指数分布等典型分布导致模型约束条件过于严格的问题,利用连续Phase-type分布描述了系统相关随机变量,构建系统可靠性解析模型,通过算例验证了模型适用性,模拟分析了修理工有无休假、修理工休假速率等相关因子对系统运行指标产生的各种影响。算例结果表明,该可靠性模型可以有效复现维修力量调度对n中取k系统可靠性的影响,可为修理工休假次数的合理安排、系统部件数量的优化配置提供理论基础和实践参考。  相似文献   

13.
This article examines a version of the machine repair problem where failures may be irreparable. Since the number of machines in the system keeps decreasing, we impose a fixed state-dependent ordering policy of the type often encountered in inventory models. Although the system is Markovian, the number of states becomes very large. The emphasis of the article, therefore, is on deriving computationally tractable formulas for the steady-state probabilities, the long-run average cost per unit time, and the vector of expected discounted costs. When the state space is so large that exact computations may be infeasible, we propose approximations which are relatively quick and simple to compute and which yield very accurate results for the test problems examined.  相似文献   

14.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   

16.
We study joint preventive maintenance (PM) and production policies for an unreliable production‐inventory system in which maintenance/repair times are non‐negligible and stochastic. A joint policy decides (a) whether or not to perform PM and (b) if PM is not performed, then how much to produce. We consider a discrete‐time system, formulating the problem as a Markov decision process (MDP) model. The focus of the work is on the structural properties of optimal joint policies, given the system state comprised of the system's age and the inventory level. Although our analysis indicates that the structure of optimal joint policies is very complex in general, we are able to characterize several properties regarding PM and production, including optimal production/maintenance actions under backlogging and high inventory levels, and conditions under which the PM portion of the joint policy has a control‐limit structure. In further special cases, such as when PM set‐up costs are negligible compared to PM times, we are able to establish some additional structural properties. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

17.
We study a class of replacement models for systems subject to deterioration. The objective is to determine an optimal replacement policy that minimizes the average operating costs of the system. We use a parametric analysis to establish sufficient conditions for the optimality of control limit policies. This work generalizes several existing results for optimal replacement models in the literature. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
A system undergoes minimal repair during [0, T] with a failure replacement on first failure during [T, a], or a planned replacement if the system is still functioning at elapsed time a. Repairs and replacements are not necessarily instantaneous. An expression is obtained for the asymptotic expected cost rate, and sufficient conditions are obtained for the optimum T* > 0. Several special cases are considered. A numerical investigation for a Weibull distributed time to first failure compares this elapsed-time policy with replacement on failure only, and also a policy based on system operating time or age. It is found that in many cases the elapsed-time-based policy is only marginally worse than one based on system age, and may therefore be preferred in view of its administrative convenience. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
A general multiperiod multi-echelon supply system consisting of n facilities each stocking a single product is studied. At the beginning of a period each facility may order stock from an exogenous source with no delivery lag and proportional ordering costs. During the period the (random) demands at the facilities are satisfied according to a given supply policy that determines to what extent stock may be redistributed from facilities with excess stock to those experiencing shortages. There are storage, shortage, and transportation costs. An ordering policy that minimizes expected costs is sought. If the initial stock is sufficiently small and certain other conditions are fulfilled, it is optimal to order up to a certain base stock level at each facility. The special supply policy in which each facility except facility 1 passes its shortages on to a given lower numbered facility called its direct supplier is examined in some detail. Bounds on the base stock levels are obtained. It is also shown that if the demand distribution at facility j is stochastically smaller (“spread” less) than that at another facility k having the same direct supplier and if certain other conditions are fulfilled, then the optimal base stock level (“virtual” stock out probability) at j is less than (greater than) or equal to that at facility k.  相似文献   

20.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号