首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The p-center problem involves finding the best locations for p facilities such that the furthest among n points is as close as possible to one of the facilities. Rectangular (sometimes called rectilinear, Manhattan, or l1) distances are considered. An O(n) algorithm for the 1-center problem, an O(n) algorithm for the 2-center problem, and an O(n logn) algorithm for the 3-center problem are given. Generalizations to general p-center problems are also discussed.  相似文献   

2.
A method previously devised for the solution of the p-center problem on a network has now been extended to solve the analogous minimax location-allocation problem in continuous space. The essence of the method is that we choose a subset of the n points to be served and consider the circles based on one, two, or three points. Using a set-covering algorithm we find a set of p such circles which cover the points in the relaxed problem (the one with m < n points). If this is possible, we check whether the n original points are covered by the solution; if so, we have a feasible solution to the problem. We now delete the largest circle with radius rp (which is currently an upper limit to the optimal solution) and try to find a better feasible solution. If we have a feasible solution to the relaxed problem which is not feasible to the original, we augment the relaxed problem by adding a point, preferably the one which is farthest from its nearest center. If we have a feasible solution to the original problem and we delete the largest circle and find that the relaxed problem cannot be covered by p circles, we conclude that the latest feasible solution to the original problem is optimal. An example of the solution of a problem with ten demand points and two and three service points is given in some detail. Computational data for problems of 30 demand points and 1–30 service points, and 100, 200, and 300 demand points and 1–3 service points are reported.  相似文献   

3.
An equity model between groups of demand points is proposed. The set of demand points is divided into two or more groups. For example, rich and poor neighborhoods and urban and rural neighborhoods. We wish to provide equal service to the different groups by minimizing the deviation from equality among groups. The distance to the closest facility is a measure of the quality of service. Once the facilities are located, each demand point has a service distance. The objective function, to be minimized, is the sum of squares of differences between all pairs of service distances between demand points in different groups. The problem is analyzed and solution techniques are proposed for the location of a single facility in the plane. Computational experiments for problems with up to 10,000 demand points and rectilinear, Euclidean, or general ?p distances illustrate the efficiency of the proposed algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

4.
A new method for the solution of minimax and minisum location–allocation problems with Euclidean distances is suggested. The method is based on providing differentiable approximations to the objective functions. Thus, if we would like to locate m service facilities with respect to n given demand points, we have to minimize a nonlinear unconstrained function in the 2m variables x1,y1, ?,xm,ym. This has been done very efficiently using a quasi-Newton method. Since both the original problems and their approximations are neither convex nor concave, the solutions attained may be only local minima. Quite surprisingly, for small problems of locating two or three service points, the global minimum was reached even when the initial position was far from the final result. In both the minisum and minimax cases, large problems of locating 10 service facilities among 100 demand points have been solved. The minima reached in these problems are only local, which is seen by having different solutions for different initial guesses. For practical purposes, one can take different initial positions and choose the final result with best values of the objective function. The likelihood of the best results obtained for these large problems to be close to the global minimum is discussed. We also discuss the possibility of extending the method to cases in which the costs are not necessarily proportional to the Euclidean distances but may be more general functions of the demand and service points coordinates. The method also can be extended easily to similar three-dimensional problems.  相似文献   

5.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

6.
When locating facilities over the earth or in space, a planar location model is no longer valid and we must use a spherical surface. In this article, we consider the one-and two-center problems on a sphere that contains n demand points. The problem is to locate facilities to minimize the maximum distance from any demand point to the closest facility. We present an O(n) algorithm for the one-center problem when a hemisphere contains all demand points and also give an O(n) algorithm for determining whether or not the hemisphere property holds. We present an O(n3 log n) algorithm for the two-center problem for arbitrarily located demand points. Finally, we show that for general p, the p center on a sphere problem is NP-hard. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 341–352, 1997  相似文献   

7.
A method is presented to locate and allocate p new facilities in relation to n existing facilities. Each of the n existing facilities has a requirement flow which must be supplied by the new facilities. Rectangular distances are assumed to exist between all facilities. The algorithm proceeds in two stages. In the first stage a set of all possible optimal new facility locations is determined by a set reduction algorithm. The resultant problem is shown to be equivalent to finding the p-median of a weighted connected graph. In the second stage the optimal locations and allocations are obtained by using a technique for solving the p-median problem.  相似文献   

8.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

9.
This paper deals with the Weber single-facility location problem where the demands are not only points but may be areas as well. It provides an iterative procedure for solving the problem with lp distances when p > 1 (a method of obtaining the exact solution when p = 1 and distances are thus rectangular already exists). The special case where the weight densities in the areas are uniform and the areas are rectangles or circles results in a modified iterative process that is computationally much faster. This method can be extended to the simultaneous location of several facilities.  相似文献   

10.
This article uses a vertex-closing approach to investigate the p-center problem. The optimal set of vertices to close are found in imbedded subgraphs of the original graph. Properties of these subgraphs are presented and then used to characterize the optimal solution, to establish a priori upper and lower bounds, to establish refined lower bounds, and to verify the optimality of solutions. These subgraphs form the foundation of two polynomial algorithms of complexity O(|E| log |E|) and O(|E|2). The algorithms are proven to converge to an optimum for special cases, and computational evidence is provided which suggests that they produce very good solutions more generally. Both algorithms perform very well on problems where p is large relative to the number of vertices n, specifically, when p/n ≥ 0.30. One of the algorithms is especially efficient for solving a sequence of problems on the same graph.  相似文献   

11.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
In this article we consider the unweighted m-center problem with rectilinear distance. We preent an O(nm–2 log n) algorithm for the m-center problem where m ≥ 4.  相似文献   

13.
Whenever n demand points are located on a hemisphere, spherical location problems can be solved easily using geometrical methods or mathematical programming. A method based on a linear programming formulation with four constraints is presented to determine whether n demand points are on a hemisphere. The formulation is derived from a modified minimax spherical location problem whose Karush-Kuhn-Tucker conditions are the constraints of the linear program. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
This paper examines the discrete equal‐capacity p‐median problem that seeks to locate p new facilities (medians) on a network, each having a given uniform capacity, in order to minimize the sum of distribution costs while satisfying the demand on the network. Such problems arise, for example, in local access and transport area telecommunication network design problems where any number of a set of p facility units can be constructed at the specified candidate sites (hence, the net capacity is an integer multiple of a given unit capacity). We develop various valid inequalities, a separation routine for generating cutting planes that are specific members of such inequalities, as well as an enhanced reformulation that constructs a partial convex hull representation that subsumes an entire class of valid inequalities via its linear programming relaxation. We also propose suitable heuristic schemes for this problem, based on sequentially rounding the continuous relaxation solutions obtained for the various equivalent formulations of the problem. Extensive computational results are provided to demonstrate the effectiveness of the proposed valid inequalities, enhanced formulations, and heuristic schemes. The results indicate that the proposed schemes for tightening the underlying relaxations play a significant role in enhancing the performance of both exact and heuristic solution methods for this class of problems. © 2000 John & Sons, Inc. Naval Research Logistics 47: 166–183, 2000.  相似文献   

15.
In this paper we consider the capacitated multi‐facility Weber problem with the Euclidean, squared Euclidean, and ?p‐distances. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the distance between them. We first present a mixed integer linear programming approximation of the problem. We then propose new heuristic solution methods based on this approximation. Computational results on benchmark instances indicate that the new methods are both accurate and efficient. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 2006  相似文献   

16.
Let YiNi, σ), i = 1, …, p, be independently distributed, where θi and σ are unknown. A Bayesian approach is used to estimate the first two moments of the minimum order statistic, W = min (Y1, …, Yp). In order to compute the Bayes estimates, one has to evaluate the predictive densities of the Yi's conditional on past data. Although the required predictive densities are complicated in form, an efficient algorithm to calculate them has been developed and given in the article. An application of the Bayesian method in a continuous-review control model with multiple suppliers is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The problem considered involves the assignment of n facilities to n specified locations. Each facility has a given nonnegative flow from each of the other facilities. The objective is to minimize the sum of transportation costs. Assume these n locations are given as points on a two-dimensional plane and transportation costs are proportional to weighted rectangular distances. Then the problem is formulated as a binary mixed integer program. The number of integer variables (all binary) involved equals the number of facilities squared. Without increasing the number of integer variables, the formulation is extended to include “site costs” Computational results of the formulation are presented.  相似文献   

18.
Computational formulas are given for the mean, variance, and autocorrelation function of the demand process at an upper-echelon facility (warehouse). The demand process at the warehouse is induced by the aggregated inventory replenishment processes of N independently operated lower-echelon facilities (stores) in parallel. Each store, we assume, employs an (s,S) inventory replenishment policy with complete backlogging to satisfy its own random, independently and identically distributed demand. The formulas result from an analysis of the stochastic replenishment process at a single store. Examples of the properties of the demand process at the upper-echelon facility are presented for several lower-echelon environments.  相似文献   

19.
Capacity expansion refers to the process of adding facilities or manpower to meet increasing demand. Typical capacity expansion decisions are characterized by uncertain demand forecasts and uncertainty in the eventual cost of expansion projects. This article models capacity expansion within the framework of piecewise deterministic Markov processes and investigates the problem of controlling investment in a succession of same type projects in order to meet increasing demand with minimum cost. In particular, we investigate the optimality of a class of investment strategies called cutoff strategies. These strategies have the property that there exists some undercapacity level M such that the strategy invests at the maximum available rate at all levels above M and does not invest at any level below M. Cutoff strategies are appealing because they are straightforward to implement. We determine conditions on the undercapacity penalty function that ensure the existence of optimal cutoff strategies when the cost of completing a project is exponentially distributed. A by-product of the proof is an algorithm for determining the optimal strategy and its cost. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
When solving location problems in practice it is quite common to aggregate demand points into centroids. Solving a location problem with aggregated demand data is computationally easier, but the aggregation process introduces error. We develop theory and algorithms for certain types of centroid aggregations for rectilinear 1‐median problems. The objective is to construct an aggregation that minimizes the maximum aggregation error. We focus on row‐column aggregations, and make use of aggregation results for 1‐median problems on the line to do aggregation for 1‐median problems in the plane. The aggregations developed for the 1‐median problem are then used to construct approximate n‐median problems. We test the theory computationally on n‐median problems (n ≥ 1) using both randomly generated, as well as real, data. Every error measure we consider can be well approximated by some power function in the number of aggregate demand points. Each such function exhibits decreasing returns to scale. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 614–637, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号