首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider a project during the life cycle of which there are cash payouts and in‐flows. To better meet his financial commitments, the project owner would like to meet all deadlines without running out of cash. We show that the cash availability objective is similar to the total weighted flowtime used to measure work‐in‐progress performance in the scheduling and inventory control literatures. In this article we provide several specialized solution methods for the problem of minimizing total weighted flowtime in an arbitrary acyclic project network, subject to activity release times and due dates, where the activity weights may be positive or negative and represent cash in‐ and out‐flows. We describe the structure of an optimal solution and provide several efficient algorithms and their complexity based on mincost and maxflow formulations. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

2.
The client‐contractor bargaining problem addressed here is in the context of a multi‐mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity‐on‐Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two‐party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

3.
We consider the scheduling of large‐scale projects to maximize the project net present value given temporal and resource constraints. The net present value objective emphasizes the financial aspects of project management. Temporal constraints between the start times of activities make it possible to handle practical problem assumptions. Scarce resources are an expression of rising cost. Since optimization techniques are not expedient to solve such problems and most heuristic methods known from literature cannot deal with general temporal constraints, we propose a new bidirectional priority‐rule based method. Scheduling activities with positive cash flows as early and activities with negative cash flows as late as possible results in a method which is completed by unscheduling techniques to cope with scarce resources. In a computational experiment, we compare the well‐known serial generation scheme where all activities are scheduled as early as possible with the proposed bidirectional approach. On the basis of a comprehensive data set known from literature containing instances with up to 1002 activities, the efficiency of the new approach is demonstrated. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

4.
Resource-constrained project scheduling problems with cash flows (RCPSPCF) are complex, combinatorial optimization problems. Many heuristics have been reported in the literature that produce reasonable schedules in limited project environments. However, the lack of a heuristic that dominates under differing project conditions can lead to a suboptimal choice of an appropriate heuristic for scheduling any given project. This may result in poor schedules and monetary losses. This paper reports on the application of the tabu search metaheuristic procedure for the RCPSPCF. Strategies for neighborhood generation and candidate selection that exploit the special features of the problem are combined with a simple multiheuristic start procedure. Extensive experimentation, with multiple data sets and comparison with an upper bound, indicates a significant improvement, both in project Net Present Value (NPV) as well as the number of projects, where the metaheuristic outperforms the best known heuristics in the literature. More specifically, this procedure produces the best schedules in over 85% of the projects tested, in contrast to the best single-pass heuristics which have been shown to dominate in at most 20% of the same cases. This iterative, general purpose heuristic is able to adapt significantly better to the complex interactions of the many critical parameters of the RCPSPCF than single-pass heuristics that use more specific information about each project environment. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 912–927, 1999  相似文献   

5.
Resource-constrained project scheduling with cash flows occurs in many settings, ranging from research and development to commercial and residential construction. Although efforts have been made to develop efficient optimal procedures to maximize the net present value of cash flows for resource-constrained projects, the inherent intractability of the problem has led to the development of a variety of heuristic methods to aid in the development of near-optimal schedules for large projects. This research focuses on the use of insights gained from the solution of a relaxed optimization model in developing heuristic procedures to schedule projects with multiple constrained resources. It is shown that a heuristic procedure with embedded priority rules that uses information from the revised solution of a relaxed optimization model increases project net present value. The heuristic procedure and nine different embedded priority rules are tested in a variety of project environments that account for different network structures, levels of resource constrainedness, and cash-flow parameters. Extensive testing with problems ranging in size from 21 to 1000 activities shows that the new heuristic procedures dominate heuristics using information from the critical path method (CPM), and in most cases outperform heuristics from previous research. The best performing heuristic rules classify activities into priority and secondary queues according to whether they lead to immediate progress payments, thus front loading the project schedule. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 365–381, 1997  相似文献   

6.
We introduce a formulation and an exact solution method for a nonpreemptive resource constrained project scheduling problem in which the duration/cost of an activity is determined by the mode selection and the duration reduction (crashing) within the mode. This problem is a natural combination of the time/cost tradeoff problem and the resource constrained project scheduling problem. It involves the determination, for each activity, of its resource requirements, the extent of crashing, and its start time so that the total project cost is minimized. We present a branch and bound procedure and report computational results with a set of 160 problems. Computational results demonstrate the effectiveness of our procedure. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 107–127, 2001  相似文献   

7.
Large complicated projects with interdependent activities can be described by project networks. Arcs represent activities, nodes represent events, and the network's structure defines the relation between activities and events. A schedule associates an occurrence time with each event: the project can be scheduled in several different ways. We assume that a known amount of cash changes hands at each event. Given any schedule the present value of all cash transactions can be calculated. The payment scheduling problem looks for a schedule that maximizes the present value of all transactions. This problem was first introduced by Russell [2]; it is a nonlinear program with linear constraints and a nonconcave objective. This paper demonstrates that the payment scheduling problem can be transformed into an equivalent linear program. The linear program has the structure of a weighted distribution problem and an efficient procedure is presented for its solution. The algorithm requires the solution of triangular systems of equations with all matrix coefficients equal to ± or 0.  相似文献   

8.
We address a single-machine scheduling problem in which penalties are assigned for early and tardy completion of jobs. These penalties are common in industrial settings where early job completion can cause the cash commitment to resources in a time frame earlier than needed, giving rise to early completion penalties. Tardiness penalties arise from a variety of sources, such as loss of customer goodwill, opportunity costs of lost sales, and direct cash penalties. Accounting for earliness cost makes the performance measure nonregular, and this nonregularity has apparently discouraged researchers from seeking solutions to this problem. We found that it is not much more difficult to design an enumerative search for this problem than it would be if the performance measure were regular. We present and demonstrate an efficient timetabling procedure which can be embedded in an enumerative algorithm allowing the search to be conducted over the domain of job permutations.© 1993 John Wiley & Sons, Inc.  相似文献   

9.
In this article we propose a new heuristic solution technique for resource-constrained project scheduling problems. Basically, it is a hybrid of priority rule and random search techniques which employs two types of adaptations in order to determine the solution space. We enhance this general scheme by the use of a new priority rule and by lower bounding techniques. The method is evaluated by comparing it with other recently proposed heuristics on a widely used set of benchmark-instances. Furthermore, we show that the procedure can be usefully applied to solve different hard problems within the field of project scheduling. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Characteristically, a small subset of operational problems admit risk neutrality when contingent claims methodology were used in their analysis. That is, for the majority of manufacturing and production problems, operating cash flows are not directly linked to prices of traded assets. However, to the extent that correlations can be estimated, the methodology's applicability to a broader set of operational problems is supported. Our article addresses this issue with the objective of extending the use of contingent claims techniques to a larger set of operational problems. In broad terms, this objective entails a partial equilibrium approach to the problem of valuing uncertain cash flows. To this end, we assume risk aversion and cast our approach within Merton's intertemporal capital asset pricing model. In this context, we formulate a “generic” production valuation model that is framed as an exercise in stochastic optimal control. The model is versatile in its characterization and can easily be adapted to accommodate a wide‐ranging set of risk‐based operational problems where the underlying sources of uncertainty are not traded. To obtain results, the model is recast as a stochastic dynamic program to be solved numerically. The article addresses a number of fundamental issues in the analysis risk based decision problems in operations. First, in the approach provided, decisions are analyzed under a properly defined risk structure. Second, the process of analysis leads to suitably adjusted probability distributions through which, appropriately discounted expectations are derived. Third, through consolidating existing concepts into a standard and adaptable framework, we extend the applicability of contingent claims methodology to a broader set of operational problems. The approach is advantageous as it obviates the need for exogenously specifying utility functions or discount rates.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
This article examines the problem of simultaneously assigning a common due date to a set of independent jobs and scheduling them on identical parallel machines in such a way that the costs associated with the due date and with the earliness or tardiness of the jobs are minimized. We establish that, for certain values of the due-date cost, an optimal schedule for this problem is also optimal for an early/tardy scheduling problem studied by Emmons. We discuss the solution properties for the two problems, and show that both problems are NP-hard even for two machines. We further show that these problems become strongly NP-hard if the number of machines is allowed to be arbitrary. We provide a dynamic programming solution for the problems, the complexity of which indicates that the problems can be solved in pseudopolynomial time as long as the number of machines remains fixed. Finally, we present the results of a limited computational study. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Scheduling IT projects and assigning the project work to human resources are an important and common tasks in almost any IT service company. It is particularly complex because human resources usually have multiple skills. Up to now only little work has considered IT‐specific properties of the project structure and human resources. In this article, we present an optimization model that simultaneously schedules the activities of multiple IT projects with serial network structures and assigns the project work to multiskilled internal and external human resources with different efficiencies. The goal is to minimize costs. We introduce a metaheuristic that decomposes the problem into a binary scheduling problem and a continuous staffing problem where the latter is solved efficiently by exploiting its underlying network structure. For comparison, we solve the mixed–binary linear program with a state–of–the–art commercial solver. The impacts of problem parameters on computation time and solution gaps between the metaheuristic and the solver are assessed in an experimental study. Our results show that the metaheuristic provides very favorable results in considerable less time than the solver for midsize problems. For larger problems, it shows a similar performance while the solver fails to return feasible solutions. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 111–127, 2012  相似文献   

13.
In this article we address the problem of scheduling a single project network with both precedence and resource constraints through the use of a local search technique. We choose a solution definition which guarantees precedence feasibility, allowing the procedure to focus on overcoming resource infeasibility. We use the 110-problem data set of Patterson to test our procedure. Our results indicate a significant improvement over the best heuristic results reported to date for these problems (Bell and Han [1]). Two major advantages of the local search algorithm are its ability to handle arbitrary objective functions and constraints and its effectiveness over a wide range of problem sizes. We present a problem example with an objective function and resource constraints which include nonlinear and non-continuous components, which are easily considered by the procedure. The results of our algorithm are significantly better than random solutions to the problem. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
In this paper we consider the discrete time/resource trade-off problem in project networks. Given a project network consisting of nodes (activities) and arcs (technological precedence relations), in which the duration of the activities is a discrete, nonincreasing function of the amount of a single renewable resource committed to it, the discrete time/resource trade-off problem minimizes the project makespan subject to precedence constraints and a single renewable resource constraint. For each activity, a work content is specified such that all execution modes (duration/resource requirement pairs) for performing the activity are allowed as long as the product of the duration and the resource requirement is at least as large as the specified work content. We present a tabu search procedure which is based on a decomposition of the problem into a mode assignment phase and a resource-constrained project scheduling phase with fixed mode assignments. Extensive computational experience, including a comparison with other local search methods, is reported. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 553–578, 1998  相似文献   

15.
In this article we address the non-preemptive flow shop scheduling problem for minimization of the sum of the completion times. We present a new modeling framework and give a novel game-theoretic interpretation of the scheduling problem. A lower-bound generation scheme is developed by solving appropriately defined linear assignment problems. This scheme can also be used as a heuristic approach for the solution of the problem with satisfactory results. Its main use, however, is as a bounding scheme within a branch-and-bound procedure. Our branch-and-bound procedure improves significantly upon the best available enu-merative procedures in the current literature. Extensive computational results are used to qualify the above statements. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Individual characteristics of multiple-constrained resource, project scheduling problems are examined in an attempt to predict the solution obtainable with heuristic methods. Difficulties encountered in performing this type of research are described, and several multiple regression models are developed for predicting heuristic performance. Both single and multiple project data are examined, and results reported demonstrate the efficacy of determining beforehand the method used for problem solution.  相似文献   

17.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   

18.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

20.
In this article we study the problem of scheduling independent tasks, each of which requires the simultaneous availability of a set of prespecified processors, with the objective of minimizing the maximum completion time. We propose a graph-theoretical approach and identify a class of polynomial instances, corresponding to comparability graphs. We show that the scheduling problem is polynomially equivalent to the problem of extending a graph to a comparability graph whose maximum weighted clique has minimum weight. Using this formulation we show that in some cases it is possible to decompose the problem according to the canonical decomposition of the graph. Finally, a general solution procedure is given that includes a branch-and-bound algorithm for the solution of subproblems which can be neither decomposed nor solved in polynomial time. Some examples and computational results are presented. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号