首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We explore the management of inventory for stochastic-demand systems, where the product's supply is randomly disrupted for periods of random duration, and demands that arrive when the inventory system is temporarily out of stock become a mix of backorders and lost sales. The stock is managed according to the following modified (s, S) policy: If the inventory level is at or below s and the supply is available, place an order to bring the inventory level up to S. Our analysis yields the optimal values of the policy parameters, and provides insight into the optimal inventory strategy when there are changes in the severity of supply disruptions or in the behavior of unfilled demands. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 687–703, 1998  相似文献   

2.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

3.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

4.
In this paper the inventory problem with backorders both deterministic and stochastic is studied using trade-off analysis in the context of vector optimization theory. The set of Pareto-optimal solutions is geometrically characterized in both the constrained and unconstrained cases. Moreover, a new way of utilizing Pareto-optimality concepts to handle classical inventory problems with backorders is derived. A new analysis of these models is done by means of a trade-off analysis. New solutions are shown, and an error bound for total inventory cost is provided. Other models such as multi-item or stochastic lead-time demand inventory problems are addressed and their Pareto-optimal solution sets are obtained. An example is included showing the additional applicability of this kind of analysis to handle parametric problems. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 83–98, 1998  相似文献   

5.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   

6.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

7.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

8.
9.
A retailer or distributor of finished goods, or the manager of a spare-parts inventory system, must generally forecast the major portion of demand. A specific customer-service level p (fraction of replenishment intervals with no stockout) implies two challenges: achieve the service within a small interval plus or minus, and do so with a minimum-cost investment in inventory. The pth fractile of lead-time demand (LTD) is the reorder point (ROP) for this service measure, and is often approximated by that fractile of a normal distribution. With this procedure, it is easy to set safety stocks for an (s, Q) inventory system. However, Bookbinder and Lordahl [2] and others have identified cases where the normal approximation yields excessive costs and/or lower service than desired. This article employs an order-statistic approach. Using available LTD data, the ROP is simply estimated from one or two of the larger values in the sample. This approach is sufficiently automatic and intuitive for routine implementation in industry, yet is distribution free. The order-statistic method requires only a small amount of LTD data, and makes no assumptions on the form of the underlying LTD distribution, nor even its parameters μ and ρ. We compare the order-statistic approach and the normal approximation, first in terms of customer service and then using a model of expected annual cost. Based upon characteristics of the available LTD data, we suggest a procedure to aid a practitioner in choosine between the normal and order-statistic method. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Traditional inventory systems treat all demands of a given item equally. This approach is optimal if the penalty costs of all customers are the same, but it is not optimal if the penalty costs are different for different customer classes. Then, demands of customers with high penalty costs must be filled before demands of customers with low penalty costs. A commonly used inventory policy for dealing with demands with different penalty costs is the critical level inventory policy. Under this policy demands with low penalty costs are filled as long as inventory is above a certain critical level. If the inventory reaches the critical level, only demands with high penalty costs are filled and demands with low penalty costs are backordered. In this article, we consider a critical level policy for a periodic review inventory system with two demand classes. Because traditional approaches cannot be used to find the optimal parameters of the policy, we use a multidimensional Markov chain to model the inventory system. We use a sample path approach to prove several properties of this inventory system. Although the cost function is not convex, we can build on these properties to develop an optimization approach that finds the optimal solution. We also present some numerical results. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

11.
A production/inventory system consisting of a single processor producing three product types and a warehouse is considered. For each product type, the demand process is assumed to be Poisson and the processing time is phase-type. Excess demand is lost. Products have a priority structure and the processor's attention is shared by all the products according to a switching rule. Production of a product continues until its target level is reached. Then, a switch-over takes place if another product needs the processor's attention. A set-up process takes place every time a switch-over occurs. An (R, r) continuous-review inventory control policy is used to start and stop the production of each product. The underlying Markov chain is studied and its steady-state distribution is obtained recursively. Through the recursive procedure, the steady-state balance equations to be dealt with are significantly reduced to a manageable set. The procedure is implemented on a supercomputer and examples are provided to show its efficiency and stability for a range of model parameters. We analyzed the joint behaviors of the inventory levels of the three products as their demand rates increase. Finally we introduced a cost minimizing objective function to guide design efforts. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
This article presents a stochastic model for a single-period production system composed of several assembly/processing and storage facilities in series. The production system operates under a composite strategy of the assemble to order and assemble in advance policies. The developed mathematical model is simpler and more compact than the ones provided in earlier articles. Moreover, the formulation allows the optimal inventory levels at the start of the period to be determined from the solution to the well-known newsboy problem. We also analyze the problem under the free distribution approach which only assumes the knowledge of the first two moments of the demand distribution. The robustness of this approach is tested by carrying an extensive experimental comparison using different demand distributions. Finally, the composite model is extended by considering the effects of some budgetary constraints. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 599–614, 1998  相似文献   

13.
In this paper we optimally control service rates for an inventory system of service facilities with perishable products. We consider a finite capacity system where arrivals are Poisson‐distributed, lifetime of items have exponential distribution, and replenishment is instantaneous. We determine the service rates to be employed at each instant of time so that the long‐run expected cost rate is minimized for fixed maximum inventory level and capacity. The problem is modelled as a semi‐Markov decision problem. We establish the existence of a stationary optimal policy and we solve it by employing linear programming. Several numerical examples which provide insight to the behavior of the system are presented. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 464–482, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10021  相似文献   

14.
Accelerated life testing (ALT) is concerned with subjecting items to a series of stresses at several levels higher than those experienced under normal conditions so as to obtain the lifetime distribution of items under normal levels. A parametric approach to this problem requires two assumptions. First, the lifetime of an item is assumed to have the same distribution under all stress levels, that is, a change of stress level does not change the shape of the life distribution but changes only its scale. Second, a functional relationship is assumed between the parameters of the life distribution and the accelerating stresses. A nonparametric approach, on the other hand, assumes a functional relationship between the life distribution functions at the accelerated and nonaccelerated stress levels without making any assumptions on the forms of the distribution functions. In this paper, we treat the problem nonparametrically. In particular, we extend the methods of Shaked, Zimmer, and Ball [7] and Strelec and Viertl [8] and develop a nonparametric estimation procedure for a version of the generalized Arrhenius model with two stress variables assuming a linear acceleration function. We obtain consistent estimates as well as confidence intervals of the parameters of the life distribution under normal stress level and compare our nonparametric method with parametric methods assuming exponential, Weibull and lognormal life distributions using both real life and simulated data. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 629–644, 1998  相似文献   

15.
Risk-Adjusted-Return-On-Capital (RAROC) is a loan-pricing criterion under which a bank sets the loan term such that a certain rate of return is achieved on the regulatory capital required by the Basel regulation. Some banks calculate the amount of regulatory capital for each loan under the standardized approach (“standardized banks,” the regulatory capital is proportional to the loan amount), and others under the internal rating-based (IRB) approach (“IRB banks,” the regulatory capital is related to the Value-at-Risk of the loan). This article examines the impact of the RAROC criterion on the bank's loan-pricing decision and the retailer's inventory decision. We find that among the loan terms that satisfy the bank's RAROC criterion, the one that benefits the retailer the most requires the bank to specify an inventory advance rate in addition to the interest rate. Under this loan term, the retailer's inventory level is more sensitive to his asset level when facing an IRB bank compared to a standardized bank. An IRB (standardized) loan leads to higher profit and inventory level for retailers with high (low) asset. For retailers with medium asset, an IRB loan results in a higher retailer profit but a lower consumer welfare. Calibrated numerical study reveals that the benefit of choosing standardized banks (relative to IRB banks) can be as high as 30% for industries with severe capital constraints, volatile demands, and low profit margins, highlighting the importance for retailers to carefully choose the type of banks to borrow from. When the interest rate is capped by regulation, retailers borrowing from a standardized bank are more likely to be influenced by the interest rate cap than those borrowing from an IRB bank. Under strong empire-building incentives (the bank will offer loan terms to maximize the size of the loan), retailers with medium initial asset level shift their preference from IRB banks to standardized banks.  相似文献   

16.
This paper discusses the properties of the inventory and advertising policy minimizing the expected discounted cost over a finite horizon in a dynamic nonstationary inventory model with random demand which is influenced by the level of promotion or goodwill. Attention is focused on the relation between the fluctuations over time of the optimal policies and the variations over time of the factors involved, i.e., demand distributions and various costs. The optimal policies are proved to be monotone in the various factors. Also, three types of fluctuations over time of the optimal policies are discussed according to which factor varies over time. For example, if over a finite interval, the random demand increases (stochastically) from one period to the next, reaches a maximum and then decreases, then the optimal inventory level will do the same. Also the period of maximum of demand never precedes that of maximum inventory. The optimal advertising behaves in the opposite way and its minimum will occur at the same time as the maximum of the inventory. The model has a linear inventory ordering cost and instantaneous delivery of stocks; many results, however, are extended to models with a convex ordering cost or a delivery time lag.  相似文献   

17.
A mathematical model is formulated for determining the number of spare components to purchase when components stochastically fail according to a known life distribution function and there is a cost incurred when a component is replaced. Bounds are determined for the optimal inventory which indicate that the inclusion of the replacement cost lowers the optimal inventory. Since these bounds are no easier to calculate than the optimal spares level, the theory is specialized to components with exponentially distributed time to failure. Procedures are given for calculating the optimal spares level, and numerical examples are provided.  相似文献   

18.
In the past, contagious distributions have been successfully applied in bacteriology, entomology, and accident statistics. This paper applies the notion of contagious distributions in the inventory control of new products and seasonal or style goods, which have an lying “true contagion” for their demands, namely, the influence of past demands on occurrence of demands. A contagious distribution is derived by assuming a nonstationary Poisson process where the demand rate at any instant depends on the past demands to that instant. Using this contagious distribution, an inventory model is developed seasonal goods and new product lines. Optimal order policies as a function of the initial level and the review period are derived.  相似文献   

19.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

20.
针对单部件系统工龄更换策略下备件需求的特点,建立了工龄更换策略与备件库存控制的联合优化模型。该模型通过分析一个订购期内工龄更换间隔期T及备件最大库存水平S对系统寿命分布的影响,建立了工龄更换间隔期、订购间隔期及最大库存水平与单位时间总费用(包括维修费用和库存费用)的关系,然后以单位时间总费用最小为目标,优化工龄更换间隔期T、订购间隔期t0及最大库存水平S。最后,基于案例,运用Matlab对模型进行数值计算,结果表明模型能有效地降低单位时间的总费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号