首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This papers deals with the classical resource‐constrained project scheduling problem (RCPSP). There, the activities of a project have to be scheduled subject to precedence and resource constraints. The objective is to minimize the makespan of the project. We propose a new heuristic called self‐adapting genetic algorithm to solve the RCPSP. The heuristic employs the well‐known activity list representation and considers two different decoding procedures. An additional gene in the representation determines which of the two decoding procedures is actually used to compute a schedule for an individual. This allows the genetic algorithm to adapt itself to the problem instance actually solved. That is, the genetic algorithm learns which of the alternative decoding procedures is the more successful one for this instance. In other words, not only the solution for the problem, but also the algorithm itself is subject to genetic optimization. Computational experiments show that the mechanism of self‐adaptation is capable to exploit the benefits of both decoding procedures. Moreover, the tests show that the proposed heuristic is among the best ones currently available for the RCPSP. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 433–448, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10029  相似文献   

2.
The resource‐constrained project scheduling problem (RCPSP) consists of a set of non‐preemptive activities that follow precedence relationship and consume resources. Under the limited amount of the resources, the objective of RCPSP is to find a schedule of the activities to minimize the project makespan. This article presents a new genetic algorithm (GA) by incorporating a local search strategy in GA operators. The local search strategy improves the efficiency of searching the solution space while keeping the randomness of the GA approach. Extensive numerical experiments show that the proposed GA with neighborhood search works well regarding solution quality and computational time compared with existing algorithms in the RCPSP literature, especially for the instances with a large number of activities. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
We consider the parallel replacement problem in which machine investment costs exhibit economy of scale which is modeled through associating both fixed and variable costs with machine investment costs. Both finite- and infinite-horizon cases are investigated. Under the three assumptions made in the literature on the problem parameters, we show that the finite-horizon problem with time-varying parameters is equivalent to a shortest path problem and hence can be solved very efficiently, and give a very simple and fast algorithm for the infinite-horizon problem with time-invariant parameters. For the general finite-horizon problem without any assumption on the problem parameters, we formulate it as a zero-one integer program and propose an algorithm for solving it exactly based on Benders' decomposition. Computational results show that this solution algorithm is efficient, i.e., it is capable of solving large scale problems within a reasonable cpu time, and robust, i.e., the number of iterations needed to solve a problem does not increase quickly with the problem size. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 279–295, 1998  相似文献   

4.
We consider the scheduling of large‐scale projects to maximize the project net present value given temporal and resource constraints. The net present value objective emphasizes the financial aspects of project management. Temporal constraints between the start times of activities make it possible to handle practical problem assumptions. Scarce resources are an expression of rising cost. Since optimization techniques are not expedient to solve such problems and most heuristic methods known from literature cannot deal with general temporal constraints, we propose a new bidirectional priority‐rule based method. Scheduling activities with positive cash flows as early and activities with negative cash flows as late as possible results in a method which is completed by unscheduling techniques to cope with scarce resources. In a computational experiment, we compare the well‐known serial generation scheme where all activities are scheduled as early as possible with the proposed bidirectional approach. On the basis of a comprehensive data set known from literature containing instances with up to 1002 activities, the efficiency of the new approach is demonstrated. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

5.
Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in premedication and infusion durations. In this paper, we formulate a two‐stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real‐life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty.  相似文献   

6.
Most scheduling problems are notoriously intractable, so the majority of algorithms for them are heuristic in nature. Priority rule‐based methods still constitute the most important class of these heuristics. Of these, in turn, parametrized biased random sampling methods have attracted particular interest, due to the fact that they outperform all other priority rule‐based methods known. Yet, even the “best” such algorithms are unable to relate to the full range of instances of a problem: Usually there will exist instances on which other algorithms do better. We maintain that asking for the one best algorithm for a problem may be asking too much. The recently proposed concept of control schemes, which refers to algorithmic schemes allowing to steer parametrized algorithms, opens up ways to refine existing algorithms in this regard and improve their effectiveness considerably. We extend this approach by integrating heuristics and case‐based reasoning (CBR), an approach that has been successfully used in artificial intelligence applications. Using the resource‐constrained project scheduling problem as a vehicle, we describe how to devise such a CBR system, systematically analyzing the effect of several criteria on algorithmic performance. Extensive computational results validate the efficacy of our approach and reveal a performance similar or close to state‐of‐the‐art heuristics. In addition, the analysis undertaken provides new insight into the behaviour of a wide class of scheduling heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 201–222, 2000  相似文献   

7.
有效武器目标分配(WTA)是防空阵地的核心。分析了目标毁伤收益、武器损伤关键战术指标因素,提出基于效费比的WTA评价标准,建立了针对多目标的WTA模型,并研究了用遗传算法求解模型的方法。该遗传算法通过设计一种武器目标分配的染色体编码,利用最优保存策略选择运算、均匀交叉运算、非均匀变异运算来求解。仿真结果验证了模型的合理性和算法的有效性。  相似文献   

8.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

9.
For sequencing different models on a paced assembly line, the commonly accepted objective is to keep the operators within the boundaries of their stations. When the operators reach the right boundary, they terminate the operation prematurely. In this article we address the problem of sequencing jobs decomposed into identical and repeating sets to minimize the total amount of remaining work, or, equivalently, to maximize the total amount of work completed. We propose an optimum algorithm and a heuristic procedure that utilizes different priority functions based on processing times. Experimental results indicate that the proposed heuristic requires less computational effort and performs better than the existing procedures: On the average, 11–14% of improvements are obtained over real data mentioned in the literature (20 groups of 1000 jobs from a U.S. automobile manufacturer). © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44 : 419–437, 1997  相似文献   

10.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   

11.
为降低鲁棒优化模型最优解的保守性,以最小化违约车辆数和总惩罚成本为目标,建立针对旅行时间不确定的开放式车辆路径问题的弱鲁棒优化模型。对于不确定数据集的每个取值,该模型的最优解可以使其目标函数值始终不超过某数值,进而改善最优解的保守性。为提高启发式算法发现最优解的概率,提出一种自设计遗传算法对模型进行求解,其主要思想是利用粒子群算法搜索出可使遗传算法预期产生最好解的算法要素,并将其进行组合,从而产生新的遗传算法。采用新产生的遗传算法对模型继续求解,输出最好解。计算结果表明:与以往的鲁棒优化方法相比,弱鲁棒优化方法的最优解的保守性显著降低。  相似文献   

12.
A procurement problem, as formulated by Murty [10], is that of determining how many pieces of equipment units of each of m types are to be purchased and how this equipment is to be distributed among n stations so as to maximize profit, subject to a budget constraint. We have considered a generalization of Murty's procurement problem and developed an approach using duality to exploit the special structure of this problem. By using our dual approach on Murty's original problem, we have been able to solve large problems (1840 integer variables) with very modest computational effort. The main feature of our approach is the idea of using the current evaluation of the dual problem to produce a good feasible solution to the primal problem. In turn, the availability of good feasible solutions to the primal makes it possible to use a very simple subgradient algorithm to solve the dual effectively.  相似文献   

13.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

14.
混合遗传算法在大型运输机装载问题中的运用   总被引:1,自引:0,他引:1  
为解决大型运输机装载方案的制定问题,构建了考虑飞机重心、飞机载重量、货舱容积、货物摆放方向、承压能力、装载优先级、货物底置位置和系留等现实约束的装载方案数学模型,提出了一种新的融合整体退火选择方式和对交叉、变异概率进行自适应处理的混合遗传算法,并将此方法运用到两个货物装载算例中。仿真实例表明:该混合遗传算法方法为大型运输机装载方案制定选择提供了一种科学有效的决策方法。  相似文献   

15.
This article examines the single-machine scheduling problem to minimize total flow time with unequal release dates. This problem has been proven to be NP-hard. We present a necessary and sufficient condition for local optimality which can also be considered as a priority rule. On the basis of this condition, we then define a class of schedules which contains all optimal solutions. We present some efficient heuristic algorithms using the previous condition to build a schedule belonging to this subset. We also prove some new dominance theorems, discuss the results found in the literature for this problem, and propose a branch-and-bound algorithm in which the heuristics are used to provide good upper bounds. We compare this new algorithm with existing algorithms found in the literature. Computational results on problems with up to 100 jobs indicate that the proposed branch-and-bound algorithm is superior to previously published algorithms. © 1992 John Wiley & Sons. Inc.  相似文献   

16.
The fixed charge problem is a mixed integer mathematical programming problem which has proved difficult to solve in the past. In this paper we look at a special case of that problem and show that this case can be solved by formulating it as a set-covering problem. We then use a branch-and-bound integer programming code to solve test fixed charge problems using the setcovering formulation. Even without a special purpose set-covering algorithm, the results from this solution procedure are dramatically better than those obtained using other solution procedures.  相似文献   

17.
In this article we propose a new heuristic solution technique for resource-constrained project scheduling problems. Basically, it is a hybrid of priority rule and random search techniques which employs two types of adaptations in order to determine the solution space. We enhance this general scheme by the use of a new priority rule and by lower bounding techniques. The method is evaluated by comparing it with other recently proposed heuristics on a widely used set of benchmark-instances. Furthermore, we show that the procedure can be usefully applied to solve different hard problems within the field of project scheduling. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
We show that the linear objective function of a search problem can be generalized to a power function and/or a logarithmic function and still be minimized by an index priority rule. We prove our result by solving the differential equation resulting from the required invariance condition, therefore, we also prove that any other generalization of this linear objective function will not lead to an index priority rule. We also demonstrate the full equivalence between two related search problems in the sense that a solution to either one can be used to solve the other one and vice versa. Finally, we show that the linear function is the only function leading to an index priority rule for the single‐machine makespan minimization problem with deteriorating jobs and an additive job deterioration function. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

19.
We study the assortment optimization problem with position effects under the nested logit model, whose goal is to find the revenue-maximizing subset of products as well as their corresponding display positions. In this joint assortment-position optimization problem, the choices of products are affected by not only their qualities and prices but also the positions where they are displayed. Despite determining the assortment and their corresponding display positions sequentially, we propose to solve this problem in an integrated way to obtain the optimal solution. We formulate this problem as a nonlinear binary integer programming model and develop a dynamic programming based solution approach to obtain the optimal assortment-position assignments. We carry out extensive numerical experiments to evaluate the benefit of our integrated approach. The most important insight we discover is that it is not necessarily better to put the most attractive products in the best position. Moreover, we show that compared to the sequential approaches, our approach can improve revenue by 10.38% on average, which suggests that firms should take into consideration position effects when making assortment decisions. Finally, we discuss results related to two extensions of this problem, that is, the special case when positions are preassigned to nests, and the joint assortment-position-price optimization problem.  相似文献   

20.
This paper deals with the problem of makespan minimization in a flow shop with two machines when the input buffer of the second machine can only host a limited number of parts. Here we analyze the problem in the context of batch processing, i.e., when identical parts must be processed consecutively. We propose an exact branch-and-bound algorithm, in which the bounds exploit the batching nature of the problem. Extensive computational results show the effectiveness of the approach, and allow us to compare it with a previous heuristic approach. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 141–164, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号