首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

2.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

3.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

4.
In the finite-horizon stochastic (s, S) inventory model with periodic review the parameters of the optimal policy generally vary with the length of the horizon. A stationary policy, however, is easier to implement and may be easier to calculate. This paper studies optimal stationary policies for a finite horizon and relates them to optimal policies through their relation to optimal stationary policies for an infinite horizon.  相似文献   

5.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

7.
We consider a single item inventory system with positive and negative stock fluctuations. Items can be purchased from a central stock, n items can be returned for a cost R + rn, and a linear inventory carrying cost is charged. It is shown that for minimizing the asymptotic cost rate when returns are a significant fraction of stock usage, a two-critical-number policy (a,b) is optimal, where b is the trigger level for returns and b – a is the return quantity. The values for a and b are found, as well as the operating characteristics of the system. We also consider the optimal return decision to make at time zero and show that it is partially determined by a and b.  相似文献   

8.
This article studies the optimal control of a periodic‐review make‐to‐stock system with limited production capacity and multiple demand classes. In this system, a single product is produced to fulfill several classes of demands. The manager has to make the production and inventory allocation decisions. His objective is to minimize the expected total discounted cost. The production decision is made at the beginning of each period and determines the amount of products to be produced. The inventory allocation decision is made after receiving the random demands and determines the amount of demands to be satisfied. A modified base stock policy is shown to be optimal for production, and a multi‐level rationing policy is shown to be optimal for inventory allocation. Then a heuristic algorithm is proposed to approximate the optimal policy. The numerical studies show that the heuristic algorithm is very effective. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 43–58, 2011  相似文献   

9.
This paper studies production planning of manufacturing systems of unreliable machines in tandem. The manufacturing system considered here produces one type of product. The demand is assumed to be a Poisson process and the processing time for one unit of product in each machine is exponentially distributed. A broken machine is subject to a sequence of repairing processes. The up time and the repairing time in each phase are assumed to be exponentially distributed. We study the manufacturing system by considering each machine as an individual system with stochastic supply and demand. The Markov Modulated Poisson Process (MMPP) is applied to model the process of supply. Numerical examples are given to demonstrate the accuracy of the proposed method. We employ (s, S) policy as production control. Fast algorithms are presented to solve the average running costs of the machine system for a given (s, S) policy and hence the approximated optimal (s, S) policy. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 65–78, 2001  相似文献   

10.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

11.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

12.
We study an infinite‐horizon, N‐stage, serial production/inventory system with two transportation modes between stages: regular shipping and expedited shipping. The optimal inventory policy for this system is a top–down echelon base‐stock policy, which can be computed through minimizing 2N nested convex functions recursively (Lawson and Porteus, Oper Res 48 (2000), 878–893). In this article, we first present some structural properties and comparative statics for the parameters of the optimal inventory policies, we then derive simple, newsvendor‐type lower and upper bounds for the optimal control parameters. These results are used to develop near optimal heuristic solutions for the echelon base‐stock policies. Numerical studies show that the heuristic performs well. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

13.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

14.
We study the (s,S) inventory system in which the server takes a rest when the level of the inventory is zero. The demands are assumed to occur for one unit at a time. The interoccurrence times between successive demands, the lead times, and the rest times are assumed to follow general distributions which are mutually independent. Using renewal and convolution techniques we obtain the state transition probabilities.  相似文献   

15.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

16.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

17.
We consider a single-item inventory system in which the stock level can increase due to items being returned as well as decrease when demands occur. Returned items can be repaired and then used to satisfy future demand, or they can be disposed of. We identify those inventory levels where disposal is the best policy. It is shown that this problem is equivalent to a problem of controlling a single-server queue. When the return and demand processes are both Poisson, we find the optimal policy exactly. When the demand and return processes are more general, we use diffusion approximations to obtain an approximate model, which is then solved. The approximate model requires only mean and variance data. Besides the optimal policy, the output of the models includes such characteristics as the operating costs, the purchase rate for new items, the disposal rate for returned items and the average inventory level. Several numerical examples are given. An interesting by-product of our investigation is an approximation for the steady-state behavior of the bulk GI/G/1 queue with a queue limit.  相似文献   

18.
19.
For most firms, especially the small‐ and medium‐sized ones, the operational decisions are affected by their internal capital and ability to obtain external capital. However, the majority of the literature on dynamic inventory control ignores the firm's financial status and financing issues. An important question that arises is: what are the optimal inventory and financing policies for firms with limited internal capital and limited access to external capital? In this article, we study a dynamic inventory control problem where a capital‐constrained firm periodically purchases a product from a supplier and sells it to a market with random demands. In each period, the firm can use its own capital and/or borrow a short‐term loan to purchase the product, with the interest rate being nondecreasing in the loan size. The objective is to maximize the firm's expected terminal wealth at the end of the planning horizon. We show that the optimal inventory policy in each period is an equity‐level‐dependent base‐stock policy, where the equity level is the sum of the firm's capital level and the value of its on‐hand inventory evaluated at the purchasing cost; and the structure of the optimal policy can be characterized by four intervals of the equity level. Our results shed light on the dynamic inventory control for firms with limited capital and short‐term financing capabilities.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 184–201, 2014  相似文献   

20.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号