首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper treats the problem of sequencing n jobs on two machines in a “flow shop.” (That is, each job in the shop is required to flow through the same sequence of the machines.) The processing time of a given job on a given machine is assumed to be distributed exponentially, with a known mean. The objective is to minimize the expected job completion time. This paper proves an optimal ordering rule, previously conjectured by Talwar [10]. A formula is also derived through Markov Chain analysis, which evaluates the expected job completion time for any given sequence of the jobs. In addition, the performance of a heuristic rule is discussed in the light of the optimal solution.  相似文献   

2.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   

3.
In this paper, we consider just‐in‐time job shop environments (job shop problems with an objective of minimizing the sum of tardiness and inventory costs), subject to uncertainty due to machine failures. We present techniques for proactive uncertainty management that exploit prior knowledge of uncertainty to build competitive release dates, whose execution improves performance. These techniques determine the release dates of different jobs based on measures of shop load, statistical data of machine failures, and repairs with a tradeoff between inventory and tardiness costs. Empirical results show that our methodology is very promising in comparison with simulated annealing and the best of 39 combinations of dispatch rules & release policies, under different frequencies of breakdowns. We observe that the performance of the proactive technique compared to the other two approaches improves in schedule quality (maximizing delivery performance while minimizing costs) with increase in frequency of breakdowns. The proactive technique presented here is also computationally less expensive than the other two approaches. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

4.
We present a shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop. The method decomposes the job shop into a number of single‐machine subproblems that are solved one after another. Each machine is scheduled according to the solution of its corresponding subproblem. The order in which the single machine subproblems are solved has a significant impact on the quality of the overall solution and on the time required to obtain this solution. We therefore test a number of different orders for solving the subproblems. Computational results on 66 instances with ten jobs and ten machines show that our heuristic yields solutions that are close to optimal, and it clearly outperforms a well‐known dispatching rule enhanced with backtracking mechanisms. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 1–17, 1999  相似文献   

5.
In the flow shop delivery time problem, a set of jobs has to be processed on m machines. Every machine has to process each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines so as to minimize maximum delivery completion time over all the jobs, where the delivery completion time of a job is the sum of its completion time, and the delivery time associated with that job. In this paper, we prove the asymptotic optimality of the Longest Delivery Time algorithm for the static version of this problem, and the Longest Delivery Time among Available Jobs (LDTA) algorithm for the dynamic version of this problem. In addition, we present the result of computational testing of the effectiveness of these algorithms. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

6.
A job shop must fulfill an order for N good items. Production is conducted in “lots,” and the number of good items in a lot can be accurately determined only after production of that lot is completed. If the number of good items falls short of the outstanding order, the shop must produce further lots, as necessary. Processes with “constant marginal production efficiency” are investigated. The revealed structure allows efficient exact computation of optimal policy. The resulting minimal cost exhibits a consistent (but not universal) pattern whereby higher quality of production is advantageous even at proportionately higher marginal cost.  相似文献   

7.
A flexible simulation system has been designed to permit investigation of sequencing rules in a large job shop, with continual input of new work. The objective is to understand what happens rather than to find optimum rules, with many conflicting measures of effectiveness: work in process, finished goods investment, delays, machine and labor utilization, and effort to implement. A few problem areas have been explored.  相似文献   

8.
Job shop scheduling with a bank of machines in parallel is important from both theoretical and practical points of view. Herein we focus on the scheduling problem of minimizing the makespan in a flexible two-center job shop. The first center consists of one machine and the second has k parallel machines. An easy-to-perform approximate algorithm for minimizing the makespan with one-unit-time operations in the first center and k-unit-time operations in the second center is proposed. The algorithm has the absolute worst-case error bound of k − 1 , and thus for k = 1 it is optimal. Importantly, it runs in linear time and its error bound is independent of the number of jobs to be processed. Moreover, the algorithm can be modified to give an optimal schedule for k = 2 .  相似文献   

9.
If the processing time of each job in a flow shop also depends on the time spent prior to processing, then the choice of a sequence influences processing times. This nonstandard scheduling problem is studied here for the minimum makespan schedule in a flow shop with two machines. The problem is NP-hard in the strong sense and already contains the main features of the general case [10]. Restricting to the case of permutation schedules, we first determine the optimal release times of the jobs for a given sequence. Permutation schedules are evaluated for this optimal policy, and the scheduling problem is solved using branch-and-bound techniques. We also show the surprising result that the optimal schedule may not be a permutation schedule. Numerical results on randomly generated data are provided for permutation schedules. Our numerical results confirm our preliminary study [10] that fairly good approximate solutions can efficiently be obtained in the case of limited computing time using the heuristics due to Gilmore and Gomory [7]. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
基于蚁群算法的试验流程优化研究   总被引:4,自引:2,他引:2  
水中兵器的海上试验涉及许多人员、兵力、被试产品、测量设备等,试验周期长、消耗大,因此如何缩短试验周期是亟待研究解决的问题.文中首先将试验流程优化问题转化为车间调度问题,建立了相应的数学模型,再应用蚁群算法转移规则得到中间结果并进行排队以对各种资源约束进行处理.最后将结果利用局部搜索算法优化后作为蚁群算法信息素更新的基础.实例计算结果表明,该方法优化效果良好.  相似文献   

11.
We consider two‐stage and three‐stage flexible flow shops with parallel machines in each stage and the minimum makespan objective. We develop linear time algorithms for these problems with absolute worst‐case bounds either sharper or no worse than the currently available ones and we accomplish this with lower complexity algorithms. We also demonstrate the asymptotic optimality of a class of algorithms for multistage flexible flow shop problems (which includes the proposed algorithms) under certain probabilistic assumptions on the job processing times. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 259–268, 2000  相似文献   

12.
We schedule a set of illuminators (homing devices) to strike a set of targets using surface-to-air missiles in a naval battle. The task is viewed as a production floor shop scheduling problem of minimizing the total weighted flow time, subject to time-window job availability and machine downtime side constraints. A simple algorithm based on solving assignment problems is developed for the case when all the job processing times are equal and the data are all integer. For the general case of scheduling jobs with unequal processing times, we develop two alternate formulations and analyze their relative strengths by comparing their respective linear programming relaxations. We select the better formulation in this comparison and exploit its special structures to develop several effective heuristic algorithms that provide good-quality solutions in real time; this is an essential element for use by the Navy. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
We consider open‐shop scheduling problems where operation‐processing times are a convex decreasing function of a common limited nonrenewable resource. The scheduler's objective is to determine the optimal job sequence on each machine and the optimal resource allocation for each operation in order to minimize the makespan. We prove that this problem is NP‐hard, but for the special case of the two‐machine problem we provide an efficient optimization algorithm. We also provide a fully polynomial approximation scheme for solving the preemptive case. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

14.
Logistics scheduling refers to the problems where the decisions of job scheduling and transportation are integrated in a single framework. In this paper, we discuss a logistics scheduling model where the raw material is delivered to the shop in batches. By making the batching and scheduling decisions simultaneously, the total inventory and batch setup cost can be reduced. We study different models on this issue, present complexity analysis and optimal algorithms, and conduct computational experiments. Some managerial insights are observed. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

15.
This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concurrent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms for some cases of these problems and pseudo‐polynomial time algorithms for some problems that are NP‐hard in the ordinary sense. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011  相似文献   

16.
Previous research on the scheduling of multimachine systems has generally focused on the optimization of individual performance measures. This article considers the sequencing of jobs through a multimachine flow shop, where the quality of the resulting schedule is evaluated according to the associated levels of two scheduling criteria, schedule makespan (Cmax) and maximum job tardiness (Tmax). We present constructive procedures that quantify the trade-off between Cmax and Tmax. The significance of this trade-off is that the optimal solution for any preference function involving only Cmax and Tmax must be contained among the set of efficient schedules that comprise the trade-off curve. For the special case of two-machine flow shops, we present an algorithm that identifies the exact set of efficient schedules. Heruistic procedures for approximating the efficient set are also provided for problems involving many jobs or larger flow shops. Computational results are reported for the procedures which indicate that both the number of efficient schedules and the error incurred by heuristically approximating the efficient set are quite small.  相似文献   

17.
It is known that the proportionate flow shop minimum makespan F m / p r p t / C max problem is solved optimally by any permutation job sequence. We show that the F m / p r p t / C max problem is at least ordinary NP‐hard when missing operations are allowed and present some solvable cases. We then consider the standard proportionate flow shop problem (with no missing operations) and show that the solution algorithms for a class of single‐machine due date assignment problems can be extended/generalized to the corresponding proportionate flow shop problems. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 98–106, 2015  相似文献   

18.
Ordered flow shop models have appeared in the literature since the mid‐1970s and proportionate flow shop models have appeared since the early 1980s. We provide a detailed review of these models along with some analysis and potential topics for future research. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

19.
The ability to cope with uncertainty in dynamic scheduling environments is becoming an increasingly important issue. In such environments, any disruption in the production schedule will translate into a disturbance of the plans for several external activities as well. Hence, from a practical point of view, deviations between the planned and realized schedules are to be avoided as much as possible. The term stability refers to this concern. We propose a proactive approach to generate efficient and stable schedules for a job shop subject to processing time variability and random machine breakdowns. In our approach, efficiency is measured by the makespan, and the stability measure is the sum of the variances of the realized completion times. Because the calculation of the original measure is mathematically intractable, we develop a surrogate stability measure. The version of the problem with the surrogate stability measure is proven to be NP‐hard, even without machine breakdowns; a branch‐and‐bound algorithm is developed for this problem variant. A tabu search algorithm is proposed to handle larger instances of the problem with machine breakdowns. The results of extensive computational experiments indicate that the proposed algorithms are quite promising in performance. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

20.
The ordered matrix flow shop problem with no passing of jobs is considered. In an earlier paper, the authors have considered a special case of the problem and have proposed a simple and efficient algorithm that finds a sequence with minimum makespan for a special problem. This paper considers a more general case. This technique is shown to be considerably more efficient than are existing methods for the conventional flow shop problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号