首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we try to identify appropriate solution procedures for different types of multiechelon production planning problems. We conduct an extensive computational study on uncapacitated multiechelon production planning problems with serial and assembly types of bill-of-material structures. Problems are formulated as both single-source fixed charge network problems and as multicommodity flow problems with fixed charges. Solution procedures considered are branch and cut, Lagrangean relaxation (for the network formulation), and branch and bound (for the multicommodity formulation). Three hundred problems with various problem structures are tested. Our conclusions suggest the best approach for each type of problem structure. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
The capacitated multicommodity network flow problem presents itself in a number of problem contexts including transportation, communication, and production. To solve the large-scale multicommodity flow problems encountered in these fields, we develop dual-ascent heuristics and a primal solution generator. The dual-ascent solutions, in addition to determining lower bounds on the optimal objective function value, provide advanced starting solutions for use with primal-based solution techniques. The primal solution generator uses the dual-ascent solution to obtain heuristically primal solutions to the multicommodity flow problems. Computational experiments performed on three test problem sets show that the dual-ascent and primal heuristic procedures typically determine nearoptimal solutions quickly. In addition, by using the dual-ascent procedure to obtain advanced starting solutions, run times for optimal multicommodity flow procedures are reduced significantly and greatly improved solutions are obtained by the new primal solution generator. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The minimum-cost formulation of the problem of determining multicommodity flows over a capacitated network subject to resource constraints has been treated in previobs papers. In those treatments only capacitated arcs were assumed and a uniform unit of measure like short tons was used for all commodities. This paper treats the effect of constraints on the nodes of the network, allows the commodities to be measured in their “natural” units and allows the network capacities to be expressed in vehicles per time period-in some cases giving a more accurate representation of the capacities of the network. This paper describes the solution procedure which uses the column generation technique; it also discusses computational experience.  相似文献   

4.
We introduce a multi‐period tree network maintenance scheduling model and investigate the effect of maintenance capacity restrictions on traffic/information flow interruptions. Network maintenance refers to activities that are performed to keep a network operational. For linear networks with uniform flow between every pair of nodes, we devise a polynomial‐time combinatorial algorithm that minimizes flow disruption. The spiral structure of the optimal maintenance schedule sheds insights into general network maintenance scheduling. The maintenance problem on linear networks with a general flow structure is strongly NP‐hard. We formulate this problem as a linear integer program, derive strong valid inequalities, and conduct a polyhedral study of the formulation. Polyhedral analysis shows that the relaxation of our linear network formulation is tight when capacities and flows are uniform. The linear network formulation is then extended to an integer program for solving the tree network maintenance scheduling problem. Preliminary computations indicate that the strengthened formulations can solve reasonably sized problems on tree networks and that the intuitions gained from the uniform flow case continue to hold in general settings. Finally, we extend the approach to directed networks and to maintenance of network nodes. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

5.
The simplex method is interpreted as a labeling procedure for certain classes of multicommodity flow problems in a manner similar to that for single commodity networks. As opposed to general multicommodity algorithms, no explicit matrix inversion is required; all simplex operations are performed graph-theoretically.  相似文献   

6.
The dynamic transportation problem is a transportation problem over time. That is, a problem of selecting at each instant of time t, the optimal flow of commodities from various sources to various sinks in a given network so as to minimize the total cost of transportation subject to some supply and demand constraints. While the earliest formulation of the problem dates back to 1958 as a problem of finding the maximal flow through a dynamic network in a given time, the problem has received wider attention only in the last ten years. During these years, the problem has been tackled by network techniques, linear programming, dynamic programming, combinational methods, nonlinear programming and finally, the optimal control theory. This paper is an up-to-date survey of the various analyses of the problem along with a critical discussion, comparison, and extensions of various formulations and techniques used. The survey concludes with a number of important suggestions for future work.  相似文献   

7.
A simultaneous non‐zero‐sum game is modeled to extend the classical network interdiction problem. In this model, an interdictor (e.g., an enforcement agent) decides how much of an inspection resource to spend along each arc in the network to capture a smuggler. The smuggler (randomly) selects a commodity to smuggle—a source and destination pair of nodes, and also a corresponding path for traveling between the given pair of nodes. This model is motivated by a terrorist organization that can mobilize its human, financial, or weapon resources to carry out an attack at one of several potential target destinations. The probability of evading each of the network arcs nonlinearly decreases in the amount of resource that the interdictor spends on its inspection. We show that under reasonable assumptions with respect to the evasion probability functions, (approximate) Nash equilibria of this game can be determined in polynomial time; depending on whether the evasion functions are exponential or general logarithmically‐convex functions, exact Nash equilibria or approximate Nash equilibria, respectively, are computed. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 139–153, 2017  相似文献   

8.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

9.
In the literature two common macroscopic evacuation planning approaches exist: The dynamic network flow approach and the Cell–Transmission–Based approach. Both approaches have advantages and disadvantages. Many efficient solution approaches for the dynamic network flow approach exist so that realistic problem instances can be considered. However, the consideration of (more) realistic aspects (eg, density dependent travel times) results in non‐linear model formulations. The Cell‐Transmission‐Based approach on the other hand considers realistic traffic phenomena like shock waves and traffic congestion, but this approach leads to long computational times for realistic problem instances. In this article, we combine the advantages of both approaches: We consider a Cell‐Transmission‐Based Evacuation Planning Model (CTEPM) and present a network flow formulation that is equivalent to the cell‐based model. Thus, the computational costs of the CTEPM are enormously reduced due to the reformulation and the detailed representation of the traffic flow dynamics is maintained. We investigate the impacts of various evacuation scenario parameters on the evacuation performance and on the computational times in a computational study including 90 realistic instances.  相似文献   

10.
We introduce a formulation and an exact solution method for a nonpreemptive resource constrained project scheduling problem in which the duration/cost of an activity is determined by the mode selection and the duration reduction (crashing) within the mode. This problem is a natural combination of the time/cost tradeoff problem and the resource constrained project scheduling problem. It involves the determination, for each activity, of its resource requirements, the extent of crashing, and its start time so that the total project cost is minimized. We present a branch and bound procedure and report computational results with a set of 160 problems. Computational results demonstrate the effectiveness of our procedure. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 107–127, 2001  相似文献   

11.
A network model incorporating stochastic features is considered. The model represents a complex sequential process where an object or system moves through a succession of states (nodes) and operating modes (classes) in the course of carrying out its function (fulfilling its purpose). Transitions between states and operating modes occur in a possibly random manner and require (consume) some resource in randomly varying amounts. We discuss the routing behavior and resource requirements of a typical object as it moves through (and eventually out of) the network. We then shift our focus from a single object and its odyssey to the network as a whole, where time is the resource and many objects are entering the network according to a possibly nonhomogeneous Poisson pattern; in this vein, we discuss the evolution of the network over time. Finally, we consider some applications of the formulation, and results.  相似文献   

12.
An important class of network flow problems is that class for which the objective is to minimize the cost of the most expensive unit of flow while obtaining a desired total flow through the network. Two special cases of this problem have been solved, namely, the bottleneck assignment problem and time-minimizing transportation problem. This paper addresses the more general case which we shall refer to as the time-minimizing network flow problem. Associated with each arc is an arc capacity (static) and a transferral time. The objective is to find a maximal flow for which the length (in time) of the longest path carrying flow is minimized. The character of the problem is discussed and a solution algorithm is presented.  相似文献   

13.
针对多个虚拟网络同时映射时资源统一优化分配的问题,提出了一种基于多目标微粒群优化的虚拟网络映射方法(MSC-VNE),提高底层网络资源利用率及全局负载均衡性能。建立了虚拟网络映射的多目标优化模型,将单个虚拟网络映射作为一个子群,并采用多子群协作优化的方法在子群映射时通过相互信息交换进行协同进化,最终达到全局资源的优化分配。仿真结果表明,与典型成果相比,提出的方法有效地提高了底层网络资源利用率和虚拟网络构建成功率。  相似文献   

14.
为充分发掘利用海量卫星网络数据,提高决策效率,加强空间频轨资源获取与储备的分析手段,尤其是对地球静止轨道资源的协调获取问题,提出基于机器学习算法的卫星网络态势评估策略。通过对卫星网络协调因素进行特征分析,选择卷积神经网络(Convolution Neural Network, CNN)为目标算法模型,并建立算法模型的训练数据集及Label规则,采用分裂信息增益度量方法对数据进行降维处理,建立CNN评估模型,并进行了验证分析。结果表明,CNN模型对卫星网络协调态势评估问题测试的正确率高达80%以上,具有较高的评估效能。随着数据量的增多,CNN评估效果逐步提升,是一种在卫星网络协调态势分析、资源储备的有效评估方法。  相似文献   

15.
This paper considers the two different flow shop scheduling problems that arise when, in a two machine problem, one machine is characterized by sequence dependent setup times. The objective is to determine a schedule that minimizes makespan. After establishing the optimally of permutation schedules for both of these problems, an efficient dynamic programming formulation is developed for each of them. Each of these formulations is shown to be comparable, from a computational standpoint, to the corresponding formulation of the traveling salesman problem. Then, the relative merits of the dynamic programming and branch and bound approaches to these two scheduling problems are discussed.  相似文献   

16.
An optimization model which is frequently used to assist decision makers in the areas of resource scheduling, planning, and distribution is the minimum cost multiperiod network flow problem. This model describes network structure decision-making problems over time. Such problems arise in the areas of production/distribution systems, economic planning, communication systems, material handling systems, traffic systems, railway systems, building evacuation systems, energy systems, as well as in many others. Although existing network solution techniques are efficient, there are still limitations to the size of problems that can be solved. To date, only a few researchers have taken the multiperiod structure into consideration in devising efficient solution methods. Standard network codes are usually used because of their availability and perceived efficiency. In this paper we discuss the development, implementation, and computational testing of a new technique, the forward network simplex method, for solving linear, minimum cost, multiperiod network flow problems. The forward network simplex method is a forward algorithm which exploits the natural decomposition of multiperiod network problems by limiting its pivoting activity. A forward algorithm is an approach to solving dynamic problems by solving successively longer finite subproblems, terminating when a stopping rule can be invoked or a decision horizon found. Such procedures are available for a large number of special structure models. Here we describe the specialization of the forward simplex method of Aronson, Morton, and Thompson to solving multiperiod network network flow problems. Computational results indicate that both the solution time and pivot count are linear in the number of periods. For standard network optimization codes, which do not exploit the multiperiod structure, the pivot count is linear in the number of periods; however, the solution time is quadratic.  相似文献   

17.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

18.
In this paper we address the cyclic scheduling problem in flow lines. We develop a modeling framework and an integer programming formulation of the problem. We subsequently present exact and approximate solution procedures. The exact solution procedure is a branch-and-bound algorithm which uses Lagrangian and station-based relaxations of the integer programming formulation of the problem as the lower bounding method. Our heuristic procedures show a performance superior to the available ones in the literature. Finally, we address the stability issue in cyclic scheduling, demonstrate its relationship to the work-in-progress inventory control of a flow line, and present a very simple procedure to generate stable schedules in flow lines. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

20.
一般带容量限制的网络图中流出源点与流入汇点的流量相等,但在实际应用中,存在一类流量经过弧发生变化的网络,使得流出源点与流入汇点的流量不相等。针对此类问题,建立了增益网络最大流模型,并通过增设虚弧将增益网络转换成循环网络,利用循环网络中汇点流量瞬间平衡的优点简化了模型。最后,结合实例进行分析,编写程序对实例进行了计算,计算结果验证了该模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号