首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.  相似文献   

2.
一般带容量限制的网络图中流出源点与流入汇点的流量相等,但在实际应用中,存在一类流量经过弧发生变化的网络,使得流出源点与流入汇点的流量不相等。针对此类问题,建立了增益网络最大流模型,并通过增设虚弧将增益网络转换成循环网络,利用循环网络中汇点流量瞬间平衡的优点简化了模型。最后,结合实例进行分析,编写程序对实例进行了计算,计算结果验证了该模型的有效性。  相似文献   

3.
This paper analyzes the problem faced by a field commander who, confronted by an enemy on N battlefields, must determine an interdiction policy for the enemy's logistics system which minimizes the amount of war material flowing through this system per unit time. The resource utilized to achieve this interdiction is subject to constraint. It can be shown that this problem is equivalent to determining the set of arcs Z* to remove subject to constraint from a directed graph G such that the resulting maximal flow is minimized. A branch and bound algorithm for the solution to this problem is described, and a numerical example is provided.  相似文献   

4.
An algorithm is given for solving minimum-cost flow problems where the shipping cost over an arc is a convex function of the number of units shipped along that arc. This provides a unified way of looking at many seemingly unrelated problems in different areas. In particular, it is shown how problems associated with electrical networks, with increasing the capacity of a network under a fixed budget, with Laplace equations, and with the Max-Flow Min-Cut Theorem may all be formulated into minimum-cost flow problems in convex-cost networks.  相似文献   

5.
An important class of network flow problems is that class for which the objective is to minimize the cost of the most expensive unit of flow while obtaining a desired total flow through the network. Two special cases of this problem have been solved, namely, the bottleneck assignment problem and time-minimizing transportation problem. This paper addresses the more general case which we shall refer to as the time-minimizing network flow problem. Associated with each arc is an arc capacity (static) and a transferral time. The objective is to find a maximal flow for which the length (in time) of the longest path carrying flow is minimized. The character of the problem is discussed and a solution algorithm is presented.  相似文献   

6.
We study a multi‐stage dynamic assignment interdiction (DAI) game in which two agents, a user and an attacker, compete in the underlying bipartite assignment graph. The user wishes to assign a set of tasks at the minimum cost, and the attacker seeks to interdict a subset of arcs to maximize the user's objective. The user assigns exactly one task per stage, and the assignment costs and interdiction impacts vary across stages. Before any stage commences in the game, the attacker can interdict arcs subject to a cardinality constraint. An interdicted arc can still be used by the user, but at an increased assignment cost. The goal is to find an optimal sequence of assignments, coupled with the attacker's optimal interdiction strategy. We prove that this problem is strongly NP‐hard, even when the attacker can interdict only one arc. We propose an exact exponential‐state dynamic‐programming algorithm for this problem as well as lower and upper bounds on the optimal objective function value. Our bounds are based on classical interdiction and robust optimization models, and on variations of the DAI game. We examine the efficiency of our algorithms and the quality of our bounds on a set of randomly generated instances. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 373–387, 2017  相似文献   

7.
We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016  相似文献   

8.
We describe the application of a decomposition based solution method to a class of network interdiction problems. The problem of maximizing the probability of sufficient disruption of the flow of information or goods in a network whose characteristics are not certain is shown to be solved effectively by applying a scenario decomposition method developed by Riis and Schultz [Comput Optim Appl 24 (2003), 267–287]. Computational results demonstrate the effectiveness of the algorithm and design decisions that result in speed improvements. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
A simultaneous non‐zero‐sum game is modeled to extend the classical network interdiction problem. In this model, an interdictor (e.g., an enforcement agent) decides how much of an inspection resource to spend along each arc in the network to capture a smuggler. The smuggler (randomly) selects a commodity to smuggle—a source and destination pair of nodes, and also a corresponding path for traveling between the given pair of nodes. This model is motivated by a terrorist organization that can mobilize its human, financial, or weapon resources to carry out an attack at one of several potential target destinations. The probability of evading each of the network arcs nonlinearly decreases in the amount of resource that the interdictor spends on its inspection. We show that under reasonable assumptions with respect to the evasion probability functions, (approximate) Nash equilibria of this game can be determined in polynomial time; depending on whether the evasion functions are exponential or general logarithmically‐convex functions, exact Nash equilibria or approximate Nash equilibria, respectively, are computed. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 139–153, 2017  相似文献   

10.
求解传感器网络最大生存时间的最大流算法   总被引:2,自引:0,他引:2       下载免费PDF全文
节能是传感器网络研究的中心问题之一,目的是延长网络的生存时间。因此对于一个给定网络,很自然地关心它的最大生存时间是多少。从网络最大流的角度分析这个问题,给出了求解传感器网络最大生存时间确切值的算法。  相似文献   

11.
The network redesign problem attempts to design an optimal network that serves both existing and new demands. In addition to using spare capacity on existing network facilities and deploying new facilities, the model allows for rearrangement of existing demand units. As rearrangements mean reassigning existing demand units, at a cost, to different facilities, they may lead to disconnecting of uneconomical existing facilities, resulting in significant savings. The model is applied to an access network, where the demands from many sources need to be routed to a single destination, using either low‐capacity or high‐capacity facilities. Demand from any location can be routed to the destination either directly or through one other demand location. Low‐capacity facilities can be used between any pair of locations, whereas high‐capacity facilities are used only between demand locations and the destination. We present a new modeling approach to such problems. The model is described as a network flow problem, where each demand location is represented by multiple nodes associated with demands, low‐capacity and high‐capacity facilities, and rearrangements. Each link has a capacity and a cost per unit flow parameters. Some of the links also have a fixed‐charge cost. The resulting network flow model is formulated as a mixed integer program, and solved by a heuristic and a commercially available software. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 487–506, 1999  相似文献   

12.
We extend the qualitative theory of sensitivity analysis for minimum-cost pure network flows of Granot and Veinott [17] to generalized network flow problems, that is, network flow problems where the amount of flow picked up by an arc is multiplied by a (positive) gain while traversing the arc. Three main results are presented. The ripple theorem gives upper bounds on the absolute value of optimal-flow variations as a function of variations in the problem parameter(s). The theory of substitutes and complements provides necessary and sufficient conditions for optimal-flow changes to consistently have the same (or the opposite) sign(s) in two given arcs, whereas the monotonicity theorem links changes in the value of the parameters to changes in optimal arc flows. Bounds on the rates of changes are also discussed. Compared with pure networks, the presence of gains makes qualitative sensitivity analysis here a much harder task. We show the profound effect on computational issues caused by the departure from the pure network structure. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Applications for content distribution over networks, such as Video‐on‐Demand (VOD), are expected to grow significantly over time. Effective bandwidth allocation schemes that can be repeatedly executed must be deployed since new programs are often installed at various servers while other are deleted. We present a model for bandwidth allocation in a content distribution network that consists of multiple trees, where the root of each tree has a server that broadcasts multiple programs throughout the tree. Each network link has limited capacity and may be used by one or more of these trees. The model is formulated as an equitable resource allocation problem with a lexicographic maximin objective function that attempts to provide equitable service performance for all requested programs at the various nodes. The constraints include link capacity constraints and tree‐like ordering constraints imposed on each of the programs. We present an algorithm that provides an equitable solution in polynomial time for certain performance functions. At each iteration, the algorithm solves single‐link maximin optimization problems while relaxing the ordering constraints. The algorithm selects a bottleneck link, fixes various variables at their lexicographic optimal solution while enforcing the ordering constraints, and proceeds with the next iteration. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
The problem of determining multicommodity flows over a capacitated network subject to resource constraints may be solved by linear programming; however, the number of potential vectors in most applications is such that the standard arc-chain formulation becomes impractical. This paper describes an approach—an extension of the column generation technique used in the multicommodity network flow problem—that simultaneously considers network chain selection and resource allocation, thus making the problem both manageable and optimal. The flow attained is constrained by resource availability and network capacity. A minimum-cost formulation is described and an extension to permit the substitution of resources is developed. Computational experience with the model is discussed.  相似文献   

15.
The most vital link in a single commodity flow network is that are whose removal results in the greatest reduction in the value of the maximal flow in the network between a source node and a sink node. This paper develops an iterative labeling algorithm to determine the most vital link in the network. A necessary condition for an are to be the most vital link is established and is employed to decrease the number of ares which must be considered.  相似文献   

16.
This paper develops an algorithm for a “shortest route” network problem in which it is desired to find the path which yields the shortest expected distance through the network. It is assumed that if a particular arc is chosen, then there is a finite probability that an adjacent arc will be traversed instead. Backward induction is used and appropriate recursion formulae are developed. A numerical example is provided.  相似文献   

17.
A comprehensive maritime interdiction strategy to attack the insurgent's logistic system was a key element in the defeat of the Tamil Tigers. The campaign of maritime interdiction required the Sri Lankan Navy (SLN) to attack LTTE arms smuggling, sea piracy, and maritime terrorism. The SLN degraded the insurgency's robust maritime logistical network while also devising tactics to engage the maritime insurgents who reacted with swarm and suicide boat tactics. The efforts of the SLN forced the Tamil Tigers to confront the government's final land offensives with diminished resources, thus collapsing a three decades’ old insurgency in a matter of months.  相似文献   

18.
A new algorithm is presented for finding maximal and maximum value flows in directed single-commodity networks. Commonly algorithms developed for this problem find a maximal flow by gradually augmenting (increasing) a feasible flow to a maximal flow. In the presented algorithm, at the beginning of each step or iteration, the flow on arcs is assigned to flow capacity. This may lead to an infeasible flow violating flow conservation at some nodes. During two passes of a MAIN step, consisting of a forward pass and a backward pass, the flow is reduced on some arcs to regain feasibility. The network is then pruned by omitting saturated arcs, and the process is repeated. The parallel implementation of the algorithm applies the two main steps at the same time to the same network. The outputs of the two steps are compared and the processing continues with the higher feasible flow. The algorithm is simple, intuitive, and efficient. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
We consider the problem of placing sensors across some area of interest. The sensors must be placed so that they cover a fixed set of targets in the region, and should be deployed in a manner that allows sensors to communicate with one another. In particular, there exists a measure of communication effectiveness for each sensor pair, which is determined by a concave function of distance between the sensors. Complicating the sensor location problem are uncertainties related to sensor placement, for example, as caused by drifting due to air or water currents to which the sensors may be subjected. Our problem thus seeks to maximize a metric regarding intrasensor communication effectiveness, subject to the condition that all targets must be covered by some sensor, where sensor drift occurs according to a robust (worst‐case) mechanism. We formulate an approximation approach and develop a cutting‐plane algorithm to solve this problem, comparing the effectiveness of two different classes of inequalities. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 582–594, 2015  相似文献   

20.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号