首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple renewal process is identified to approximate the complex departure process of a queue often found in queueing network models. The arrival process to the queue is the superposition or merging of several independent component-renewal processes that are approximations of departure processes from other queues and external arrival processes; there is a single server with exponential service times, and the waiting space is infinite. The departure process of this queue is of interest because it is the arrival process to other queues in the network. The approximation proposed is a hybrid; the mean and variance of the approximating departure intervals is a weighted average of those determined by basic methods in Whitt [41] with the weighting function empirically determined using simulation. Tandem queueing systems with superposition arrival processes and exponential service times are used to evaluate the approximation. The departure process of the first queue in the tandem is approximated by a renewal process, the tandem system is replaced by two independent queues, and the second queue is solved analytically. When compared to simulation estimates, the average absolute error in hybrid approximations of the expected number in the second queue is 6%, a significant improvement over 22–41% in the basic methods.  相似文献   

2.
This paper extends the Low-Lippman M/M/1 model to the case of Gamma service times. Specifically, we have a queue in which arrivals are Poisson, service time is Gamma-distributed, and the arrival rate to the system is subject to setting an admission fee p. The arrival rate λ(p) is non-increasing in p. We prove that the optimal admission fee p* is a non-decreasing function of the customer work load on the server. The proof is for an infinite capacity queue and holds for the infinite horizon continuous time Markov decision process. In the special case of exponential service time, we extend the Low-Lippman model to include a state-dependent service rate and service cost structure (for finite or infinite time horizon and queue capacity). Relatively recent dynamic programming techniques are employed throughout the paper. Due to the large class of functions represented by the Gamma family, the extension is of interest and utility.  相似文献   

3.
Single server queues with general interarrival and service times are approximated by queues with two-point (Bernoulli) interarrival times and exponential service times. The parameters are chosen such that the first four moments of the difference of the service times and interarrival times in the approximating system equal those of the original system. The aptness of the approximation is discussed and some examples are presented comparing the exact and approximate waiting time distributions. A more complicated approximation is presented using the dual system (exponential arrivals, Bernoulli service) for those cases where the original approximation cannot be used.  相似文献   

4.
An optimal operating policy is characterized for the infinite‐horizon average‐cost case of a single server queueing control problem. The server may be turned on at arrival epochs or off at departure epochs. Two classes of customers, each of them arriving according to an independent Poisson processes, are considered. An arriving 1‐customer enters the system if the server is turned on upon his arrival, or if the server is on and idle. In the former case, the 1‐customer is selected for service ahead of those customers waiting in the system; otherwise he leaves the system immediately. 2‐Customers remain in the system until they complete their service requirements. Under a linear cost structure, this paper shows that a stationary optimal policy exists such that either (1) leaves the server on at all times, or (2) turns the server off when the system is empty. In the latter case, we show that the stationary optimal policy is a threshold strategy, this feature being commonplace in most of priority queueing systems and inventory models. However, the optimal policy in our model is determined by two thresholds instead of one. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 201–209, 2001  相似文献   

5.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   

6.
A system of two parallel queues where the arrivals from a single stream of customers join the shorter queue is considered. Arrivals form a homogeneous Poisson stream and the service times in each of the two queues are independent exponential variates. By treating one of the queues as bounded, the steady-state probability vector for the system can be expressed in a modified matrix-geometric form and can be computed efficiently. Computational procedures for the sojourn time distribution and characteristics of the departure stream are developed. Some numerical results are presented, and based on these results an efficient approximation scheme for the model is developed which can be readily extended to systems with more than two parallel queues.  相似文献   

7.
Queueing systems which include the possibility for a customer to return to the same server for additional service are called queueing systems with feedback. Such systems occur in computer networks for example. In these systems a chosen customer will wait in the queue, be serviced and then, with probability p, return to wait again, be serviced again and continue this process until, with probability (1 – p) = q, it departs the system never to return. The time of waiting plus service time, the nth time the customer goes through, we will call his nth sojourn time. The (random) sum of these sojourn times we will call the total sojourn time (abbreviated, sojourn time when there is no confusion which sojourn time we are talking about). In this paper we study the total sojourn time in a queueing system with feedback. We give the details for M/G/1 queues in which the decision to feedback or not is a Bernoulli process. While the details of the computations can be more difficult, the structure of the sojourn time process is unchanged for the M/G/1 queue with a more general decision process as will be shown. We assume the reader is familiar with Disney, McNickle and Simon [1].  相似文献   

8.
The determination of steady-state characteristics in systems of tandem queues has been left to computer simulation because of the lack of exact solutions in all but the simplest newtorks. In this paper, several methods developed for approximating the average waiting time in single-server queues are extended to systems of queues in series. Three methods, due to Fraker, Page, and Marchal, are compared along with results gathered through GPSS simulation. Various queueing networks with Erlangian service distributions are investigated.  相似文献   

9.
We study via simulation an M/M/1 queueing system with the assumption that a customer's service time and the interarrival interval separating his arrival from that of his predecessor are correlated random variables having a bivariate exponential distribution. We show that positive correlation reduces the mean and variance of the total waiting time and that negative correlation has the opposite effect. By using spectral analysis and a nonparametric test applied to the sample power spectra associated with certain simulated waiting times we show the effect to be statistically significant.  相似文献   

10.
Some general results are derived for single-channel queues with Poisson input and state-dependent Erlang service times in view of the possible use of this model to approximate arbitrary M/G/1-like state-dependent queues in a manner similar to that suggested by Rosenshine, and by Kendall, and Kotiah, Thompson, and Waugh for the M/G/1. Numerical procedures are indicated for the evaluation of stationary state probabilities, expected system sizes and waiting times, and parameter estimation.  相似文献   

11.
This article generalizes the models in Guo and Zipkin, who focus on exponential service times, to systems with phase‐type service times. Each arriving customer decides whether to stay or balk based on his expected waiting cost, conditional on the information provided. We show how to compute the throughput and customers' average utility in each case. We then obtain some analytical and numerical results to assess the effect of more or less information. We also show that service‐time variability degrades the system's performance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
We study the assignment of flexible servers to stations in tandem lines with service times that are not necessarily exponentially distributed. Our goal is to achieve optimal or near‐optimal throughput. For systems with infinite buffers, it is already known that the effective assignment of flexible servers is robust to the service time distributions. We provide analytical results for small systems and numerical results for larger systems that support the same conclusion for tandem lines with finite buffers. In the process, we propose server assignment heuristics that perform well for systems with different service time distributions. Our research suggests that policies known to be optimal or near‐optimal for Markovian systems are also likely to be effective when used to assign servers to tasks in non‐Markovian systems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

13.
We study discrete‐time, parallel queues with two identical servers. Customers arrive randomly at the system and join the queue with the shortest workload that is defined as the total service time required for the server to complete all the customers in the queue. The arrivals are assumed to follow a geometric distribution and the service times are assumed to have a general distribution. It is a no‐jockeying queue. The two‐dimensional state space is truncated into a banded array. The resulting modified queue is studied using the method of probability generating function (pgf) The workload distribution in steady state is obtained in form of pgf. A special case where the service time is a deterministic constant is further investigated. Numerical examples are illustrated. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 440–454, 2000  相似文献   

14.
This article shows how to determine the stationary distribution of the virtual wait in M/G/1 queues with either one-at-a-time or exhaustive server vacations, depending on either service times or accrued workload. For the first type of dependence, each vacation time is a function of the immediately preceding service time or of whether the server finds the system empty after returning from vacation. In this way, it is possible to model situations such as long service times followed by short vacations, and vice versa. For the second type of dependence, the vacation time assigned to an arrival to follow its service is a function of the level of virtual wait reached. By this device, we can model situations in which vacations may be shortened whenever virtual delays have gotten excessive. The method of analysis employs level-crossing theory, and examples are given for various cases of service and vacation-time distributions. A closing discussion relates the new model class to standard M/G/1 queues where the service time is a sum of variables having complex dependencies. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Retrial queueing systems are widely used in teletraffic theory and computer and communication networks. Although there has been a rapid growth in the literature on retrial queueing systems, the research on retrial queues with nonexponential retrial times is very limited. This paper is concerned with the analytical treatment of an M/G/1 retrial queue with general retrial times. Our queueing model is different from most single server retrial queueing models in several respectives. First, customers who find the server busy are queued in the orbit in accordance with an FCFS (first‐come‐first‐served) discipline and only the customer at the head of the queue is allowed for access to the server. Besides, a retrial time begins (if applicable) only when the server completes a service rather upon a service attempt failure. We carry out an extensive analysis of the queue, including a necessary and sufficient condition for the system to be stable, the steady state distribution of the server state and the orbit length, the waiting time distribution, the busy period, and other related quantities. Finally, we study the joint distribution of the server state and the orbit length in non‐stationary regime. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 561–581, 1999  相似文献   

16.
Single server queues with hyperexponential service times are studied. Explicit expressions are derived for the waiting time and state distributions.  相似文献   

17.
We develop a robust queueing network analyzer algorithm to approximate the steady-state performance of a single-class open queueing network of single-server queues with Markovian routing. The algorithm allows nonrenewal external arrival processes, general service-time distributions and customer feedback. The algorithm is based on a decomposition approximation, where each flow is partially characterized by its rate and a continuous function that measures the stochastic variability over time. This function is a scaled version of the variance-time curve, called the index of dispersion for counts (IDC). The required IDC functions for the external arrival processes can be calculated from the model primitives or estimated from data. Approximations for the IDC functions of the internal flows are calculated by solving a set of linear equations. The theoretical basis is provided by heavy-traffic limits for the flows established in our previous papers. A robust queueing technique is used to generate approximations of the mean steady-state performance at each queue from the IDC of the total arrival flow and the service specification at that queue. The algorithm's effectiveness is supported by extensive simulation studies.  相似文献   

18.
Consider a distributed system where many gatekeepers share a single server. Customers arrive at each gatekeeper according to independent Poisson processes with different rates. Upon arrival of a new customer, the gatekeeper has to decide whether to admit the customer by sending it to the server, or to block it. Blocking costs nothing. The gatekeeper receives a reward after a customer completes the service, and incurs a cost if an admitted customer finds a busy server and therefore has to leave the system. Assuming an exponential service distribution, we formulate the problem as an n‐person non‐zero‐sum game in which each gatekeeper is interested in maximizing its own long‐run average reward. The key result is that each gatekeeper's optimal policy is that of a threshold type regardless what other gatekeepers do. We then derive Nash equilibria and discuss interesting insights. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 702–718, 2003.  相似文献   

19.
Discrete‐time queues with D‐MAP arrival process are more useful in modeling and performance analysis of telecommunication networks based on the ATM environment. This paper analyzes a finite‐buffer discrete‐time queue with general bulk‐service rule, wherein the arrival process is D‐MAP and service times are arbitrarily and independently distributed. The distributions of buffer contents at various epochs (departure, random, and prearrival) have been obtained using imbedded Markov chain and supplementary variable methods. Finally, some performance measures such as loss probability and average delay are discussed. Numerical results are also presented in some cases. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 345–363, 2003.  相似文献   

20.
This paper explores a modification of the output discipline for the Poisson input, exponential output, single channel, first-come, first-served queueing system. Instead, the service time distribution of customers beginning service when alone in the system is considered different from that governing service times of all other customers. More specifically, the service times of lone customers are governed by a one parameter gamma distribution, while the service times of all other customers are exponentially ajstributed. The generating function for the steady-state probsbilities, nj = Pr { j customers in system at an arbitrary point of departure}, of the imbedded chain, {Xn/Xn = number in system after nth customer is serviced}, is obtained, and the steady-state probabilities, themselves, are found in closed form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号