首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Consider a continuous-time airline overbooking problem that relates to a single-leg flight and a single service class with a stationary fare. Passengers may cancel their reservations at any time and receive a full refund. Therefore fares can be thought of as being paid at flight time. At that time, the airline bumps passengers in excess of flight capacity and pays a penalty for so doing. The wflight-time revenue, that is, fares received less bumping penalties paid, is quasiconcave in the number of reservations at that time. We model the reservations process as a continuous-time terminal-value birth-and-death process. A more general model than is necessary for an airline reservations system is considered, in which the airline controls both the reservation acceptance (birth) and the cancellation (death) rates. In current practice airlines do not control cancellation rates (though other industries do exercise such control, e.g., hotels) and control reservation acceptance rates by declining reservation requests. The more general model might be applied to other targeting applications, such as steering a vehicle through space toward a target location. For the general model a piecewise-constant booking-limit policy is optimal; that is, at all times the airline accepts reservation requests up to a booking limit if the current number of reservations is less than that booking limit, and declines reservation requests otherwise. When the airline is allowed to decline all reservation requests, as is the case in practice, the booking-limit optimal policy defined by using the greatest optimal booking limit at all times is piecewise constant. Moreover, these booking limits fall toward flight time. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A well‐studied problem in airline revenue management is the optimal allocation of seat inventory among different fare‐classes, given a capacity for the flight and a demand distribution for each class. In practice, capacity on a flight does not have to be fixed; airlines can exercise some flexibility on the supply side by swapping aircraft of different capacities between flights as partial booking information is gathered. This provides the airline with the capability to more effectively match their supply and demand. In this paper, we study the seat inventory control problem considering the aircraft swapping option. For theoretical and practical purposes, we restrict our attention to the class of booking limit policies. Our analytical results demonstrate that booking limits considering the swapping option can be considerably different from those under fixed capacity. We also show that principles on the relationship between the optimal booking limits and demand characteristics (size and risk) developed for the fixed‐capacity problem no longer hold when swapping is an option. We develop new principles and insights on how demand characteristics affect the optimal booking limits under the swapping possibility. We also develop an easy to implement heuristic for determining the booking limits under the swapping option and show, through a numerical study, that the heuristic generates revenues close to those under the optimal booking limits. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
Passenger prescreening is a critical component of aviation security systems. This paper introduces the Multilevel Allocation Problem (MAP), which models the screening of passengers and baggage in a multilevel aviation security system. A passenger is screened by one of several classes, each of which corresponds to a set of procedures using security screening devices, where passengers are differentiated by their perceived risk levels. Each class is defined in terms of its fixed cost (the overhead costs), its marginal cost (the additional cost to screen a passenger), and its security level. The objective of MAP is to assign each passenger to a class such that the total security is maximized subject to passenger assignments and budget constraints. This paper shows that MAP is NP‐hard and introduces a Greedy heuristic that obtains approximate solutions to MAP that use no more than two classes. Examples are constructed using data extracted from the Official Airline Guide. Analysis of the examples suggests that fewer security classes for passenger screening may be more effective and that using passenger risk information can lead to more effective security screening strategies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

4.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

5.
This paper presents a branch‐and‐price algorithm for scheduling n jobs on m nonhomogeneous parallel machines with multiple time windows. An additional feature of the problem is that each job falls into one of ρ priority classes and may require two operations. The objective is to maximize the weighted number of jobs scheduled, where a job in a higher priority class has “infinitely” more weight or value than a job in a lower priority class. The methodology makes use of a greedy randomized adaptive search procedure (GRASP) to find feasible solutions during implicit enumeration and a two‐cycle elimination heuristic when solving the pricing subproblems. Extensive computational results are presented based on data from an application involving the use of communications relay satellites. Many 100‐job instances that were believed to be beyond the capability of exact methods, were solved within minutes. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
A transportation system has N vehicles with no capacity constraint which take passengers from a depot to various destinations and return to the depot. The trip times are considered to be independent and identically distributed random variables. The dispatch strategy at the depot is to dispatch immediately, or to hold any returning vehicles with the objective of minimizing the average wait per passenger at the depot, if passengers arrive at a uniform rate. Optimal control strategies and resulting waits are determined in the special case of exponentially distributed trip time for various N up to N = 15. For N ? 1, the nature of the solution is always to keep a reservoir of vehicles in the depot, and to decrease (increase) the time headway between dispatches as the size of the reservoir gets larger (smaller). For sufficiently large N, one can approximate the number of vehicles in the reservoir by a continuum and obtain analytic experession for the optimal dispatch rate as a function of the number of vehicles in the reservoir. For the optimal strategy, it is shown that the average number of vehicles in the depot is of order N1/3. These limit properties are expected to be quite insensitive to the actual trip time distribution, but the convergence of the exact properties to the continuum approximation as N → ∞ is very slow.  相似文献   

7.
The ability to effectively match supply and demand under uncertainty can result in significant revenue benefits in the airline industry. We study the benefits of a Demand Driven Swapping (DDS) approach that takes advantage of the flexibilities in the system and dynamically swaps aircraft as departures near and more accurate demand information is obtained. We analyze the effectiveness of different DDS strategies, characterized by their frequency (how often the swapping decision is revised), in hedging against demand uncertainty. Swapping aircraft several weeks prior to departures will not cause much disturbance to revenue management and operations, but will be based on highly uncertain demands. On the other hand, revising the swapping decision later will decrease the possibility of bad swaps, but at a higher cost of disrupting airport services and operations. Our objective is to provide guidelines on how the flexible (swappable) capacity should be managed in the system. We study analytical models to gain insights into the critical parameters that affect the revenue benefits of the different swapping strategies. Our study determines the conditions under which each of the different DDS strategies is effective. We complement our analysis by testing the proposed DDS strategies on a set of flight legs, using data obtained from United Airlines. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

8.
n periodic tasks are to be processed by a single machine, where each task i has a maximum request rate or periodicity Fi, a processing time Ei, a deadline Di, relative to each request of task i, a task-request interrupt overhead Ii, and a task-independent scheduling overhead S. Two scheduling strategies are considered for sequencing the execution of an arbitrary arrangement of task requests in time: the preemptive and the nonpreemptive earliest-deadline algorithms. Necessary and sufficient conditions are derived for establishing whether a given set of tasks can be scheduled by each scheduling strategy. The conditions are given in the form of limited simulations of a small number of well-defined task-request arrangements. If all simulations succeed, the schedule is feasible for the given set of tasks. If any simulation fails, the schedule is infeasible. While interrupt handling and scheduling overheads can be handled by such simulations, context switching overhead resulting from preemption cannot. A counterexample illustrates how the simulations fail to uncover unschedulable task sets when context switching overhead is considered.  相似文献   

9.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

10.
Hollander, Park, and Proschan define a survival function S of a positive random variable X to be new better than used at age t0 (NBU-{t0}) if S satisfies $ \begin{array}{*{20}c} {\frac{{S(x + t_0)}}{{S\left({t_0} \right)}} \le S\left(x \right),} & {{\rm for}\,{\rm all}\,x\, \ge \,0,} \\ \end{array}$ where S(x) = P(X > x). The NBU-{t0} class is a special case of the NBU-A family of survival distributions, where A is a subset of [0, ∞). These families introduce a variety of modeling possibilities for use in reliability studies. We treat problems of nonparametric estimation of survival functions from these classes by estimators which are themselves members of the classes of interest. For a number of such classes, a recursive estimation technique is shown to produce closed-form estimators which are strongly consistent and converge to the true survival distribution at optimal rates. For other classes, additional assumptions are required to guarantee the consistency of recursive estimators. As an example of the latter case, we demonstrate the consistency of a recursive estimator for S ∈ NBU-[t0, ∞) based on lifetime data from items surviving a preliminary “burn-in” test. The relative precision of the empirical survival curve and several recursive estimators of S are investigated via simulation; the results provide support for the claim that recursive estimators are superior to the empirical survival curve in restricted nonparametric estimation problems of the type studied here.  相似文献   

11.
An attacker, being one of two types, initiates an attack at some time in the interval [-T, 0]. The a priori probabilities of each type are known. As time elapses the defender encounters false targets which occur according to a known Poisson process and which can be properly classified with known probability. The detection and classification probabilities for each type attacker are given. If the defender responds with a weapon at the time of attack, he survives with a probability which depends on the number of weapons in his possession and on attacker type. If he does not respond, his survival probability is smaller. These probabilities are known, as well as the current number of weapons in the defender's possession. They decrease as the number of weapons decreases. The payoff is the defender's survival probability. An iterative system of first-order differential equations is derived whose unique solution V1(t),V2(t),…,Vk(t) is shown to be the value of the game at time t, when the defender has 1, 2,…, k,… weapons, respectively. The optimal strategies are determined. Limiting results are obtained as t→-∞, while the ratio of the number of weapons to the expected number of false targets remaining is held constant.  相似文献   

12.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

13.
When an unreliable supplier serves multiple retailers, the retailers may compete with each other by inflating their order quantities in order to obtain their desired allocation from the supplier, a behavior known as the rationing game. We introduce capacity information sharing and a capacity reservation mechanism in the rationing game and show that a Nash equilibrium always exists. Moreover, we provide conditions guaranteeing the existence of the reverse bullwhip effect upstream, a consequence of the disruption caused by the supplier. In contrast, we also provide conditions under which the bullwhip effect does not exist. In addition, we show that a smaller unit reservation payment leads to more bullwhip and reverse bullwhip effects, while a large unit underage cost results in a more severe bullwhip effect. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 203–216, 2017  相似文献   

14.
The following problem is studied. The units of an inventory are used one by one until all have failed. Their lifetimes decrease with their ages, when they are taken out of the inventory. An item of age a is supposed to have a lifetime Y exp(-a), where Y is a random variable which does not depend on a. It is shown that in order to maximize the total lifetime the items should be taken according to the LIFO principle. This is shown for a certain class of distributions of Y. This class includes the exponential and the Pareto distributions.  相似文献   

15.
以等角航线作为截击引导航线计算的基础,研究了满足战术要求的截击引导航线自动生成方法,提出了基于前置点滑动搜索的截击引导航线优化生成算法(LPMSOA,lead-point moving search optimal algorithm)。LPMSOA算法采用二分搜索思想,以到达时间差为优化准则,通过对预定敌机前置点的滑动搜索来寻找最优前置点,通过飞行航迹长度最小化获得最短截击时间,在此基础上对最优截击引导航线进行解算。仿真实验表明,LPMSOA能有效解决空战截击引导航线自动生成问题,算法实时性强,计算精度高。  相似文献   

16.
This article deals with the problem of selecting the t best of n independent and identically distributed random variables which are observed sequentially with sampling cost c per unit. Assume that a decision for acceptance or rejection must be made after each sampling and that the reward for each observation with value x is given by px - c, where p is 1 if the observation is accepted, or 0 otherwise. The optimal decision procedure (strategy) for maximizing the total expected reward is obtained. The critical numbers which are necessary to carry out the optimal decision procedure is presented by two recursive equations. The limit values of the critical numbers and the expected sample size are also studied.  相似文献   

17.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

18.
In this article, we consider a loss‐averse newsvendor with stochastic demand. The newsvendor might procure options when demand is unknown, and decide how many options to execute only after demand is revealed. If the newsvendor reserves too many options, he would incur high reservation costs. Yet reserving too few could result in lost sales. So the newsvendor faces a trade‐off between reservation costs and losing sales. When there are multiple options available, the newsvendor has to consider how many units of each to reserve by studying the trade‐off between flexibility and costs. We show how the newsvendor's loss aversion behavior affects his ordering decision, and propose an efficient algorithm to compute his optimal solution in the general case with n options. We also present examples showing how the newsvendor's ordering strategy changes as loss aversion rises. © 2014 Wiley Periodicals, Inc. 62:46–59, 2015  相似文献   

19.
This paper addresses the problem of finding a feasible schedule of n jobs on m parallel machines, where each job has a deadline and some jobs are preassigned to some machine. This problem arises in the daily assignment of workload to a set of flight dispatchers, and it is strongly characterized by the fact that the job lengths may assume one out of k different values, for small k. We prove the problem to be NP‐complete for k = 2 and propose an effective implicit enumeration algorithm which allows efficiently solution a set of real‐life instances. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 359–376, 2000  相似文献   

20.
The individual and social optimum control policies for entry to an M/M//1 queue serving several classes of customers have been shown to be control-limit policies. The technique of policy iteration provides the social optimum policy for such a queue in a straightforward manner. In this article, the problem of finding the optimal control policy for the M/Ek/1 system is solved, thereby expanding the potential applicability of the solutions developed. The Markovian nature of the queueing system is preserved by considering the service as having k sequential phases, each with independent, identically distributed, exponential service times, through which a customer must pass to be serviced. The optimal policy derived by policy iteration for such a system is likely to be difficult to use because it requires knowledge of the number of phases rather than customers in the system when an arrival occurs. To circumvent this difficulty, a heuristic is used to find a good usable (implementable) solution. In addition, a mixed-integer program is developed which yields the optimal implementable solution when solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号