首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Since the introduction of flexible manufacturing systems, researchers have investigated various planning and scheduling problems faced by the users of such systems. Several of these problems are not encountered in more classical production settings, and so‐called tool management problems appear to be among the more fundamental ones of these problems. Most tool management problems are hard to solve, so that numerous approximate solution techniques have been proposed to tackle them. In this paper, we investigate the quality of such algorithms by means of worst‐case analysis. We consider several polynomial‐time approximation algorithms described in the literature, and we show that all these algorithms exhibit rather poor worst‐case behavior. We also study the complexity of solving tool management problems approximately. In this respect, we investigate the interrelationships among tool management problems, as well as their relationships with other well‐known combinatorial problems such as the maximum clique problem or the set covering problem, and we prove several negative results on the approximability of various tool management problems. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 445–462, 1999  相似文献   

2.
We consider two‐stage and three‐stage flexible flow shops with parallel machines in each stage and the minimum makespan objective. We develop linear time algorithms for these problems with absolute worst‐case bounds either sharper or no worse than the currently available ones and we accomplish this with lower complexity algorithms. We also demonstrate the asymptotic optimality of a class of algorithms for multistage flexible flow shop problems (which includes the proposed algorithms) under certain probabilistic assumptions on the job processing times. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 259–268, 2000  相似文献   

3.
Until recently, fast algorithms for the maximum flow problem have typically proceeded by constructing layered networks and establishing blocking flows in these networks. However, in recent years, new distance-directed algorithms have been suggested that do not construct layered networks but instead maintain a distance label with each node. The distance label of a node is a lower bound on the length of the shortest augmenting path from the node to the sink. In this article we develop two distance-directed augmenting path algorithms for the maximum flow problem. Both the algorithms run in O(n2m) time on networks with n nodes and m arcs. We also point out the relationship between the distance labels and layered networks. Using a scaling technique, we improve the complexity of our distance-directed algorithms to O(nm log U), where U denotes the largest arc capacity. We also consider applications of these algorithms to unit capacity maximum flow problems and a class of parametric maximum flow problems.  相似文献   

4.
Problems having the mathematical structure of a quadratic assignment problem are found in a diversity of contexts: by the economist in assigning a number of plants or indivisible operations to a number of different geographical locations; by the architect or indusatrial engineer in laying out activities, offices, or departments in a building; by the human engineer in arranging the indicators and controls in an operators control room; by the electronics engineer in laying out components on a backboard; by the computer systems engineer in arranging information in drum and disc storage; by the production scheduler in sequencing work through a production facility; and so on. In this paper we discuss several types of algorithms for solving such problems, presenting a unifying framework for some of the existing algorithms, and dcscribing some new algorithms. All of the algorithms discussed proceed first to a feasible solution and then to better and better feasible solutions, until ultimately one is discovered which is shown to be optimal.  相似文献   

5.
The integer programming literature contains many algorithms for solving all-integer programming problems but, in general, existing algorithms are less than satisfactory even in solving problems of modest size. In this paper we present a new technique for solving the all-integer, integer programming problem. This algorithm is a hybrid (i.e., primal-dual) cutting-plane method which alternates between a primal-feasible stage related to Young's simplified primal algorithm, and a dual-infeasible stage related to Gomory's dual all-integer algorithm. We present the results of computational testing.  相似文献   

6.
This paper is concerned with a modification of a recently proposed variant of Karmarkar's algorithm for solving linear programming problems. In analyzing this variant, we exhibit interesting and useful relationships of these types of algorithms with barrier function methods, and subgradient optimization procedures involving space dilation techniques, which subsume the well-known ellipsoidal type of algorithms. Convergence of this variant is established under certain regularity conditions. We also provide remarks on how to obtain dual variables or Lagrange multipliers at optimality.  相似文献   

7.
In this article we develop a class of general knapsack problems which are hard for branch and bound algorithms. The number of alternate optimal solutions for these problems grows exponentially with problem parameters. In addition the LP bound is shown to be ineffective. Computational tests indicate that these problems are truly difficult for even very small problems. Implications for the testing of algorithms using randomly generated problems is discussed.  相似文献   

8.
During the course of the last few years, attacks on the traveling salesman problem have resulted in a variety of often innovative and rather powerful computational procedures. In this article, we present a review of these results for problems defined on weighted and unweighted graphs. Some account of computational behavior for exact algorithms is provided; however, the primary coverage deals with the strategy of particular procedures. In addition, we include some aspects of nonexact algorithms with major interest confined to the establishment of worst-case bounds.  相似文献   

9.
This article describes a heuristic and two exact algorithms for several classes of vehicle routing problems defined on tree networks. These include capacitated and time‐constrained vehicle routing problems. One of the exact algorithms is based on the computation of bin packing lower bounds. The other uses column generation. The first algorithm performs better on problems containing small customer demands and in which all vehicles are identical. Otherwise, the second algorithm is more powerful and more versatile. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 75–89, 1999  相似文献   

10.
军事信息系统研制中经常涉及CGCS2000坐标系下的大地问题解算,但直接采用韦森特公式进行软件设计存在一些问题。通过对韦森特公式在工程运用中的问题进行了分析,对正解、反解算法进行了补充完善并给出了相关的计算实例供编程检查。改进后的算法简单实用,适合军事信息系统软件的实现。  相似文献   

11.
This article examines the single-machine scheduling problem to minimize total flow time with unequal release dates. This problem has been proven to be NP-hard. We present a necessary and sufficient condition for local optimality which can also be considered as a priority rule. On the basis of this condition, we then define a class of schedules which contains all optimal solutions. We present some efficient heuristic algorithms using the previous condition to build a schedule belonging to this subset. We also prove some new dominance theorems, discuss the results found in the literature for this problem, and propose a branch-and-bound algorithm in which the heuristics are used to provide good upper bounds. We compare this new algorithm with existing algorithms found in the literature. Computational results on problems with up to 100 jobs indicate that the proposed branch-and-bound algorithm is superior to previously published algorithms. © 1992 John Wiley & Sons. Inc.  相似文献   

12.
This article uses a vertex-closing approach to investigate the p-center problem. The optimal set of vertices to close are found in imbedded subgraphs of the original graph. Properties of these subgraphs are presented and then used to characterize the optimal solution, to establish a priori upper and lower bounds, to establish refined lower bounds, and to verify the optimality of solutions. These subgraphs form the foundation of two polynomial algorithms of complexity O(|E| log |E|) and O(|E|2). The algorithms are proven to converge to an optimum for special cases, and computational evidence is provided which suggests that they produce very good solutions more generally. Both algorithms perform very well on problems where p is large relative to the number of vertices n, specifically, when p/n ≥ 0.30. One of the algorithms is especially efficient for solving a sequence of problems on the same graph.  相似文献   

13.
分布式约束优化问题(DCOP)能够对多智能体系统(MAS)中的各种分布式推理任务进行建模,广泛应用于分布式规划、调度、资源分配等问题中。首先从DCOP的概念出发,引入一个典型的DCOP实例,在此基础上对DCOP问题求解的两类主流算法进行了详细介绍和比较分析。针对DCOP对现实问题建模中出现的部分集中式、硬约束、开放式、隐私和anytime等5个方面的问题进行了阐述,并介绍了相应的扩展算法。在动态实时问题,自稳定性与误差容错以及在物理分布式环境下仿真等问题仍需进一步研究。  相似文献   

14.
A network with traffic between nodes is known. The links of the network can be designed either as two‐way links or as one‐way links in either direction. The problem is to find the best configuration of the network which minimizes total travel time for all users. Branch and bound optimal algorithms are practical only for small networks (up to 15 nodes). Effective simulated annealing and genetic algorithms are proposed for the solution of larger problems. Both the simulated annealing and the genetic algorithms propose innovative approaches. These innovative ideas can be used in the implementation of these heuristic algorithms for other problems as well. Additional tabu search iterations are applied on the best results obtained by these two procedures. The special genetic algorithm was found to be the best for solving a set of test problems. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 449–463, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10026  相似文献   

15.
Most scheduling problems are notoriously intractable, so the majority of algorithms for them are heuristic in nature. Priority rule‐based methods still constitute the most important class of these heuristics. Of these, in turn, parametrized biased random sampling methods have attracted particular interest, due to the fact that they outperform all other priority rule‐based methods known. Yet, even the “best” such algorithms are unable to relate to the full range of instances of a problem: Usually there will exist instances on which other algorithms do better. We maintain that asking for the one best algorithm for a problem may be asking too much. The recently proposed concept of control schemes, which refers to algorithmic schemes allowing to steer parametrized algorithms, opens up ways to refine existing algorithms in this regard and improve their effectiveness considerably. We extend this approach by integrating heuristics and case‐based reasoning (CBR), an approach that has been successfully used in artificial intelligence applications. Using the resource‐constrained project scheduling problem as a vehicle, we describe how to devise such a CBR system, systematically analyzing the effect of several criteria on algorithmic performance. Extensive computational results validate the efficacy of our approach and reveal a performance similar or close to state‐of‐the‐art heuristics. In addition, the analysis undertaken provides new insight into the behaviour of a wide class of scheduling heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 201–222, 2000  相似文献   

16.
Minimum cardinality set covering problems (MCSCP) tend to be more difficult to solve than weighted set covering problems because the cost or weight associated with each variable is the same. Since MCSCP is NP-complete, large problem instances are commonly solved using some form of a greedy heuristic. In this paper hybrid algorithms are developed and tested against two common forms of the greedy heuristic. Although all the algorithms tested have the same worst case bounds provided by Ho [7], empirical results for 60 large randomly generated problems indicate that one algorithm performed better than the others.  相似文献   

17.
This article studies two due window scheduling problems to minimize the weighted number of early and tardy jobs in a two‐machine flow shop, where the window size is externally determined. These new scheduling models have many practical applications in real life. However, results on these problems have rarely appeared in the literature because of a lack of structural and optimality properties for solving them. In this article, we derive several dominance properties and theorems, including elimination rules and sequencing rules based on Johnsos order, lower bounds on the penalty, and upper bounds on the window location, which help to significantly trim the search space for the problems. We further show that the problems are NP‐hard in the ordinary sense only. We finally develop efficient pseudopolynomial dynamic programming algorithms for solving the problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

18.
In this article, we study item shuffling (IS) problems arising in the logistics system of steel production. An IS problem here is to optimize shuffling operations needed in retrieving a sequence of steel items from a warehouse served by a crane. There are two types of such problems, plate shuffling problems (PSP) and coil shuffling problems (CSP), considering the item shapes. The PSP is modeled as a container storage location assignment problem. For CSP, a novel linear integer programming model is formulated considering the practical stacking and shuffling features. Several valid inequalities are constructed to accelerate the solving of the models. Some properties of optimal solutions of PSP and CSP are also derived. Because of the strong NP‐hardness of the problems, we consider some special cases of them and propose polynomial time algorithms to obtain optimal solutions for these cases. A greedy heuristic is proposed to solve the general problems and its worst‐case performances on both PSP and CSP are analyzed. A tabu search (TS) method with a tabu list of variable length is proposed to further improve the heuristic solutions. Without considering the crane traveling distance, we then construct a rolling variable horizon heuristic for the problems. Numerical experiments show that the proposed heuristic algorithms and the TS method are effective. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

19.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

20.
近年来,人工智能技术在图像处理领域取得了突破性进展,使得目标识别和目标检测算法的性能得到大幅提高,也为军用光电装备智能化创造了有利条件。本文从算法、数据和计算能力等人工智能三要素入手,分析了快速实现军用光电装备智能化的有效途径及过程中可能面临的问题,指出:现有的技术理论基本满足装备升级需求,智能化过程中还应重点加强实时性算法的研究,提早对专用数据集的收集整理进行布局完善,采用低功耗高性能边缘计算设备为装备计算能力水平提升提供支撑等。同时,在工程化过程中仍存在部分实际问题,需根据装备进行个性化设计,以解决理论与应用之间的差距。最后,建议重点加强国产化水平与能力的提高,以实现关键技术自主可控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号