首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

2.
The manufacturing process for a computer chip is complex in that it involves a large number of distinct operations requiring a substantial lead‐time for completion. Our observations of such a manufacturing process at a large plant in the United States led us to identify several tactical and operational problems that were being addressed by the production planners on a recurring basis. This paper focuses on one such problem. At a tactical level, given a demand forecast of wafers to be manufactured, one specific problem deals with specifying which machine or machine groups will process different batches of wafers. We address this problem by recognizing the capacity limitations of the individual machines as well as the requirement for reducing operating and investment costs related to the machines. A mathematical model, which is a variation of the well‐known capacitated facility location problem, is proposed to solve this problem. Given the intractability of the model, we first develop problem specific lower bounding procedures based on Lagrangean relaxation. We also propose a heuristic method to obtain “good” solutions with reasonable computational effort. Computational tests, using hypothetical and industry‐based data, indicate that our heuristic approach provides optimal/near optimal solutions fairly quickly. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

3.
This paper examines the discrete equal‐capacity p‐median problem that seeks to locate p new facilities (medians) on a network, each having a given uniform capacity, in order to minimize the sum of distribution costs while satisfying the demand on the network. Such problems arise, for example, in local access and transport area telecommunication network design problems where any number of a set of p facility units can be constructed at the specified candidate sites (hence, the net capacity is an integer multiple of a given unit capacity). We develop various valid inequalities, a separation routine for generating cutting planes that are specific members of such inequalities, as well as an enhanced reformulation that constructs a partial convex hull representation that subsumes an entire class of valid inequalities via its linear programming relaxation. We also propose suitable heuristic schemes for this problem, based on sequentially rounding the continuous relaxation solutions obtained for the various equivalent formulations of the problem. Extensive computational results are provided to demonstrate the effectiveness of the proposed valid inequalities, enhanced formulations, and heuristic schemes. The results indicate that the proposed schemes for tightening the underlying relaxations play a significant role in enhancing the performance of both exact and heuristic solution methods for this class of problems. © 2000 John & Sons, Inc. Naval Research Logistics 47: 166–183, 2000.  相似文献   

4.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

5.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

6.
In this note we describe a local-search heuristic (LSH) for large non-unicost set-covering problems (SCPs). The new heuristic is based on the simulated annealing algorithm and uses an improvement routine designed to provide low-cost solutions within a reasonable amount of CPU time. The solution costs associated with the LSH compared very favorably to the best previously published solution costs for 20 large SCPs taken from the literature. In particular, the LSH yielded new benchmark solutions for 17 of the 20 test problems. We also report that, for SCPs where column cost is correlated with column coverage, the new heuristic provides solution costs competitive with previously published results for comparable problems. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
We focus on the concave‐cost version of a production planning problem where a manufacturer can meet demand by either producing new items or by remanufacturing used items. Unprocessed used items are disposed. We show the NP‐hardness of the problem even when all the costs are stationary. Utilizing the special structure of the extreme‐point optimal solutions for the minimum concave‐cost problem with a network flow type feasible region, we develop a polynomial‐time heuristic for the problem. Our computational study indicates that the heuristic is a very efficient way to solve the problem as far as solution speed and quality are concerned. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

8.
We examine the basis structure of the linear relaxation of the generalized assignment problem. The basis gives a surprising amount of information. This leads to a very simple heuristic that uses only generalized network optimization codes. Lower bounds can be generated by cut generation, where the violated inequalities are found directly from the relaxation basis. An improvement heuristic with the same flavor is also presented.  相似文献   

9.
This article considers the Economic Lot Scheduling Problem where setup times and costs can be reduced by an initial investment that is amortized over time. The objective is to determine a multiple-item single facility cyclic schedule to minimize the long run average holding and setup costs plus the amortized investment. We develop a lower bound on the long run average inventory carrying and setup costs as a function of the setup times, and show that this lower bound is increasing concave on the setup times when the out-of-pocket setup costs are zero or proportional to the setup times. We then develop a model that may be helpful in deciding the magnitude and the distribution of a one-time investment in reducing the setup times when the investment is amortized over time. Numerical results based on randomly generated problems, and on Bomberger's ten item problem indicate that significant overall savings are possible for highly utilized facilities. Most of the savings are due to a significant reduction in the long run average holding cost. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer. When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer's capacity. We discuss the impact of coordination on the supply chain cost as well as on the manufacturer's capacity. We also identify the situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

11.
The dynamics of the environment in which supply chains evolve requires that companies frequently redesign their logistics distribution networks. In this paper we address a multiperiod single‐sourcing problem that can be used as a strategic tool for evaluating the costs of logistics network designs in a dynamic environment. The distribution networks that we consider consist of a set of production and storage facilities, and a set of customers who do not hold inventories. The facilities face production capacities, and each customer's demand needs to be delivered by a single facility in each period. We deal with the assignment of customers to facilities, as well as the location, timing, and size of inventories. In addition, to mitigate start and end‐of‐study effects, we view the planning period as a typical future one, which will repeat itself. This leads to a cyclic model, in which starting and ending inventories are equal. Based on an assignment formulation of the problem, we propose a greedy heuristic, and prove that this greedy heuristic is asymptotically feasible and optimal in a probabilistic sense. We illustrate the behavior of the greedy heuristic, as well as some improvements where the greedy heuristic is used as the starting point of a local interchange procedure, on a set of randomly generated test problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 412–437, 2003  相似文献   

12.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
The extended economic lot scheduling problem (EELSP) is concerned with scheduling the production of a set of items in a single facility to minimize the long-run average holding, backlogging, and setup costs. Given an efficient cyclic production schedule for the EELSP, called the target schedule, we consider the problem of how to schedule production after a single schedule disruption. We propose a base stock policy, characterized by a base stock vector, that prescribes producing an item until its inventory level reaches the peak inventory of the target schedule corresponding to the item's position in the production sequence. We show that the base stock policy is always successful in recovering the target schedule. Moreover, the base stock policy recovers the target schedule at minimal excess over average cost whenever the backorder costs are proportional to the processing times. This condition holds, for example, when the value of the items is proportional to their processing times, and a common inventory carrying cost and a common service level is used for all the items. Alternatively, the proportionality condition holds if the inventory manager is willing to select the service levels from a certain set that is large enough to guarantee any minimal level of service, and then uses the imputed values for the backorder costs. When the proportionality condition holds we provide a closed-form expression for the total relevant excess over average cost of recovering the target schedule. We assess the performance of the base stock policy when the proportionality condition does not hold through a numerical study, and suggest some heuristic uses of the base stock policy. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   

15.
A capacity expansion model with multiple facility types is examined, where different facility types represent different quality levels. Applications for the model can be found in communications networks and production facilities. The model assumes a finite number of discrete time periods. The facilities are expanded over time. Capacity of a high-quality facility can be converted to satisfy demand for a lower-quality facility. The costs considered include capacity expansion costs and excess capacity holding costs. All cost functions are nondecreasing and concave. An algorithm that finds optimal expansion policies requires extensive computations and is practical only for small scale problems. Here, we develop a heuristic that employs so-called distributed expansion policies. It also attempts to decompose the problem into several smaller problems solved independently. The heuristic is computationally efficient. Further, it has consistently found near-optimal solutions.  相似文献   

16.
The problem considered in this article is a generalization of the familiar makespan problem, in which n jobs are allocated among m parallel processors, so as to minimize the maximum time (or cost) on any processor. Our problem is more general, in that we allow the processors to have (a) different initial costs, (b) different utilization levels before new costs are incurred, and (c) different rates of cost increase. A heuristic adapted from the bin-packing problem is shown to provide solutions which are close to optimal as the number of iterations is allowed to increase. Computational testing, over a large number of randomly generated problem instances, suggests that heuristic errors are, on average, very small.  相似文献   

17.
This article explores ordering policies for inventory systems with three supply modes. This model is particularly interesting because the optimal ordering decision needs to balance the inventory and purchase costs, as well as the costs for earlier and later periods. The latter cost trade-off is present only in inventory systems with three or more supply modes. Therefore, the result not only offers guidelines for the operation of the concerned inventory systems, but also provides valuable insight into the complex cost trade-offs when more supply modes are available. We assume that the difference between the lead times is one period, and the inventory holding and shortage costs are linear. We analyze two cases and obtain the structure of the optimal ordering policy. Moreover, in the first case, explicit formulas are derived to calculate the optimal order-up-to levels. In the second case, although the optimal order-up-to levels are functions of the initial inventory state and are not obtained in closed form, their properties are discussed. We also develop heuristic ordering policies based on the news-vendor model. Our numerical experiments suggest that the heuristic policies perform reasonably well. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
This article examines the short run total costs and long run average costs of products under warranty. Formulae for both consumer cost under warranty and producer profit are derived. The results in the case of the pro rata warranty correct a mistake appearing in Blischke and Scheuer [5]. We also show that expected average cost to both the producer and the consumer of a product under warranty depends on both the mean of the product lifetime distribution and on its failure rate.  相似文献   

19.
This article deals with supply chain systems in which lateral transshipments are allowed. For a system with two retailers facing stochastic demand, we relax the assumption of negligible fixed transshipment costs, thus, extending existing results for the single‐item case and introducing a new model with multiple items. The goal is to determine optimal transshipment and replenishment policies, such that the total centralized expected profit of both retailers is maximized. For the single‐item problem with fixed transshipment costs, we develop optimality conditions, analyze the expected profit function, and identify the optimal solution. We extend our analysis to multiple items with joint fixed transshipment costs, a problem that has not been investigated previously in the literature, and show how the optimality conditions may be extended for any number of items. Due to the complexity involved in solving these conditions, we suggest a simple heuristic based on the single‐item results. Finally, we conduct a numerical study that provides managerial insights on the solutions obtained in various settings and demonstrates that the suggested heuristic performs very well. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 637–664, 2014  相似文献   

20.
We evaluate an approach to decrease inventory costs at retail inventory locations that share a production facility. The retail locations sell the same product but differ in the variance of retail demand. Inventory policies at retail locations generate replenishment orders for the production facility. The production facility carries no finished goods inventory. Thus, production lead time for an order is the sojourn time in a single server queueing system. This lead time affects inventory costs at retail locations. We examine the impact of moving from a First Come First Served (FCFS) production rule for orders arriving at the production facility to a rule in which we provide non‐preemptive priority (PR) to orders from retail locations with higher demand uncertainty. We provide three approximations for the ratio of inventory costs under PR and FCFS and use them to identify conditions under which PR decreases retail inventory costs over FCFS. We then use a Direct Approach to establish conditions when PR decreases retail inventory costs over FCFS. We extend the results to orders from locations that differ in the mean and variance of demand uncertainty. The analysis suggests that tailoring lead times to product demand characteristics may decrease system inventory costs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 376–390, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号