首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical,refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4 V and SS304 L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4 V and SS304 L into which pure oxygen free copper(OFC) was introduced as interlayer were investigated. Boxe Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4 V and SS304 L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.  相似文献   

2.
《防务技术》2015,11(4)
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.  相似文献   

3.
《防务技术》2015,11(3)
Magnetically impelled arc butt(MIAB) welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel(T11) tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone(TMAZ). To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost.The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.  相似文献   

4.
《防务技术》2015,11(3)
The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.  相似文献   

5.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   

6.
To overcome the problems of fusion welding of aluminium alloys, the friction stir welding(FSW) is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the FS weld. In the present work, the effect of tool profile on the weld nugget microstructure and pitting corrosion of AA2219 aluminium-copper alloy was studied. FSW of AA2219 alloy was carried out using five profiles, namely conical, square, triangle, pentagon and hexagon. The temperature measurements were made in the region adjacent to the rotating pin. It was observed that the peak temperature is more in hexagonal tool pin compared to the welds produced with other tool pin profiles. It is observed that the extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the hardness and corrosion properties of the joint during FSW. It was found that the microstructure changes like grain size, misorientation and precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for hexagon profile tool compared to other profiles, which was attributed to material flow and strengthening precipitate morphology in nugget zone. Higher amount of heat generation in FS welds made with hexagonal profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone.  相似文献   

7.
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.  相似文献   

8.
《防务技术》2015,11(2)
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.  相似文献   

9.
采用便携式搅拌摩擦焊设备,对3mm厚的7A52铝合金薄板进行了焊接,对焊接头的显微组织和机械性能进行了观察测试。研究结果表明:焊接头可分为动态再结晶区、热-机影响区和母材3个区域,而没有明显的热影响区。动态再结晶区组织发生再结晶,生成细小的等轴晶粒;热-机影响区有塑性变形流线,且范围较窄;母材区保持着原来的轧制组织。接头硬度的最薄弱环节在热-机影响区。接头抗拉强度达到母材的70%左右,能够满足战场应急抢修的需求。  相似文献   

10.
《防务技术》2015,11(3)
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.  相似文献   

11.
《防务技术》2014,10(1):1-8
This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.  相似文献   

12.
《防务技术》2020,16(2):381-391
This study investigates the effect of tool rotational speed (TRS) on particle distribution in nugget zone (NZ) through quantitative approach and its consequences on the mechanical property of friction stir welded joints of AA6092/17.5 SiCp-T6 composite. 6 mm thick plates are welded at a constant tool tilt angle of 2° and tool traverse speed of 1 mm/s by varying the TRS at 1000 rpm, 1500 rpm and 2000 rpm with a taper pin profiled tool. Microstructure analysis shows large quantity of uniformly shaped smaller size SiC particle with lower average particle area which are homogeneously distributed in the NZ. The fragmentation of bigger size particles has been observed because of abrading action of the hard tool and resulting shearing effect and severe stress generation due to the rotation of tool. The particles occupy maximum area in the matrix compared to that of the base material (BM) due to the redistribution of broken particles as an effect of TRS. The migration of particles towards the TMAZ-NZ transition zone has been also encountered at higher TRS (2000 rpm). The microhardness analysis depicts variation in average hardness from top to bottom of the NZ, minimum for 1500 rpm and maximum for 2000 rpm. The impact strength at 1000 rpm and 1500 rpm remains close to that of BM (21.6 J) while 2000 rpm shows the accountable reduction. The maximum joint efficiency has been achieved at 1500 rpm (84%) and minimum at 1000 rpm (68%) under tensile loading. Fractographic analysis shows mixed mode of failure for BM, 1000 rpm and 1500 rpm, whereas 2000 rpm shows the brittle mode of failure.  相似文献   

13.
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).  相似文献   

14.
《防务技术》2015,11(3)
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.  相似文献   

15.
《防务技术》2015,11(3)
Friction stir welding using the tools with polygonal pins is often found to improve the mechanical strength of weld joint in comparison to the tools with circular pins. However, the impacts of pin profile on the peak temperature, tool torque and traverse force, and the resultant mechanical stresses experienced by the tool have been rarely reported in a systematic manner. An estimation of the rate of heat generation for the tools with polygonal pins is challenging due to their non-axisymmetric cross-section about the tool axis. A novel methodology is presented to analytically estimate the rate of heat generation for the tools with polygonal pins. A three-dimensional heat transfer analysis of friction stir welding is carried out using finite element method. The computed temperature field from the heat transfer model is used to estimate the torque, traverse force and the mechanical stresses experienced by regular triangular, square, pentagon and hexagon pins following the principles of solid mechanics. The computed results show that the peak temperature experienced by the tool pin increases with the number of pin sides. However, the resultant maximum shear stress experienced by the pin reduces from the triangular to hexagonal pins.  相似文献   

16.
为提高战场装备的应急抢修能力,以火药和2Al/3CuO系高热剂为焊接热源,开发了一种新型的便携式焊接材料——火药复合焊条,对其焊缝的组织形貌及性能进行研究.试验结果表明,火药复合焊条的焊接属于熔化焊,焊缝与基体之间存在明显的过渡区,焊缝成形良好,焊缝的抗拉强度大于400MPa,高于母材本身强度,能够满足战场应急抢修能力的需要.  相似文献   

17.
选取其关键部件—喷口加力调节器作为故障诊断研究对象,提出了一种基于动态主元分析(DPCA)和广义回归神经网络(GRNN)相结合的喷口加力调节器故障诊断方法。在燃气轮机专用试验平台对其进行试验,采集喷口加力调节器的高压转子转速、低压转子转速、燃油油量、燃油耗量等参数原始数据,对其进行预处理,并采用DPCA方法对其进行动态主元分析,提取其不同健康状态的主元,构建特征向量,采用特征向量构建GRNN神经网络故障诊断模型,并通过测试数据对该方法的有效性进行试验验证。为表明该方法的有效性,采用了基于GRNN和基于DPCA-RBF的方法对喷口加力调节器不同健康状态进行了诊断技术研究,并对不同方法所得到的诊断结果进行了对比分析。结果表明,采用DPCA和GRNN相结合的故障诊断方法能有效识别出喷口加力调节器不同的健康状态,具有很好的实际应用价值。  相似文献   

18.
《防务技术》2015,11(3)
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.  相似文献   

19.
为克服铝合金薄板焊接接头强度偏低、韧性不足的缺点,用ER5356焊丝对不同厚度的2A12铝合金板材进行了手工氩弧焊接,并采用超声冲击处理对焊接接头进行全覆盖强化处理。采用金相显微镜观察了处理和未处理焊接接头的显微组织结构,对接头的力学性能进行了测试分析,分析了超声冲击处理改善2A12铝合金焊接接头力学性能的机理。结果表明:铝合金焊接接头经超声冲击强化处理后,6 mm和4 mm厚板材对接接头的抗拉强度分别提高了17.4%和23.7%,延伸率分别提高了28%和44%,焊缝表层组织得到明显细化。分析认为:晶粒大幅细化、组织致密化和缺陷减少,是超声冲击处理改善铝合金焊接接头抗拉伸性能的主要原因。  相似文献   

20.
利用电化学电位噪声方法检测了不同腐蚀状态304与316两种不镑钢管焊缝区试样在室温碱液中的腐蚀行为,并采用电化学噪声时域谱、频域谱进行了分析,结果表明:不同腐蚀状态焊缝试样的腐蚀电位及噪声时城谱特征不同,可利用电位噪声频城谱的高频斜率K值定性判定是否发生局部腐蚀,同时可根据频城谱中发生事件特殊频率fn区分材料的腐蚀状态...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号