首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a component placement problem and a digital computer backboard wiring problem are formulated as integer linear programs. The component placement problem consists of making a unique assignment of components to column positions such that wireability is maximized. The backboard wiring problem consists of three interrelated subproblems, namely, the placement, the connection, and the routing problems. The placement and connection problems are combined and solved as one, thereby giving the optimal circuit connections as well as minimizing the total lead length. It is shown that under certain assumptions, the number of inequalities and variables in the problem can be greatly reduced. Further simplifying assumptions lead to a near optimal solution. Examples of other allocation problems to which the models presented here are applicable are given. The following concepts are formulated as linear inequalities: (1) the absolute magnitude of the difference between two variables; (2) minimize the minimum function of a set of functions; and (3) counting the number of (0, 1) adjacent component pairs in a vector.  相似文献   

2.
This paper considers a problem of locating new facilities in the plane with respect to existing facilities, the locations of which are known. The problem consists of finding locations of new facilities which will minimize a total cost function which consists of a sum of costs directly proportional to the Euclidian distances among the new facilities, and costs directly proportional to the Euclidian distances between new and existing facilities. It is established that the total cost function has a minimum; necessary conditions for a mimumum are obtained; necessary and sufficient conditions are obtained for the function to be strictly convex (it is always convex); when the problem is “well structured,” it is established that for a minimum cost solution the locations of the new facilities will lie in the convex hull of the locations of the existing facilities. Also, a dual to the problem is obtained and interpreted; necessary and sufficient conditions for optimum solutions to the problem, and to its dual, are developed, as well as complementary slackness conditions. Many of the properties to be presented are motivated by, based on, and extend the results of Kuhn's study of the location problem known as the General Fermat Problem.  相似文献   

3.
We perform a sensitivity analysis of the Euclidean, single-facility minisum problem, which is also known as the Weber problem. We find the sensitivity of the optimal site of the new facility to changes in the locations and weights of the demand points. We apply these results to get the optimal site if some of the parameters in the problem are changed. We also get approximate formulas for the set of all possible optimal sites if demand points are restricted to given areas, and weights must be within given ranges, which is a location problem under conditions of uncertainty.  相似文献   

4.
考虑了二阶线性系统的比例微分(PD)反馈特征结构配置问题以及其在最优控制问题中的应用。基于比例微分特征结构配置参数化方法,将二阶线性系统的最优控制问题转化为一个便于求解的有约束条件的极小值问题,并给出了相应的求解算法。三自由度质量弹簧阻尼系统算例及其仿真结果表明所提算法简单、有效。  相似文献   

5.
We focus on the concave‐cost version of a production planning problem where a manufacturer can meet demand by either producing new items or by remanufacturing used items. Unprocessed used items are disposed. We show the NP‐hardness of the problem even when all the costs are stationary. Utilizing the special structure of the extreme‐point optimal solutions for the minimum concave‐cost problem with a network flow type feasible region, we develop a polynomial‐time heuristic for the problem. Our computational study indicates that the heuristic is a very efficient way to solve the problem as far as solution speed and quality are concerned. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
The fixed charge problem is a mixed integer mathematical programming problem which has proved difficult to solve in the past. In this paper we look at a special case of that problem and show that this case can be solved by formulating it as a set-covering problem. We then use a branch-and-bound integer programming code to solve test fixed charge problems using the setcovering formulation. Even without a special purpose set-covering algorithm, the results from this solution procedure are dramatically better than those obtained using other solution procedures.  相似文献   

7.
Assigning storage locations to incoming or reshuffled containers is a fundamental problem essential to the operations efficiency of container terminals. The problem is notoriously hard for its combinatorial and dynamic nature. In this article, we minimize the number of reshuffles in assigning storage locations for incoming and reshuffled export containers. For the static problem to empty a given stack without any new container arrival, the optimum reshuffle sequence is identified by an integer program (IP). The integer program captures the evolution of stack configurations as a function of decisions and is of interest by itself. Heuristics based on the integer program are then derived. Their competitiveness in accuracy and time are established by extensive numerical runs comparing them with existing heuristics in literature and in practice as well as with extensions of the existing heuristics. Variants of the IP‐based heuristics are then applied to the dynamic problem with continual retrievals and arrivals of containers. Again, numerical runs confirm that the IP‐based heuristic is competitive. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

8.
Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.  相似文献   

9.
The problem considered in this article is a generalization of the familiar makespan problem, in which n jobs are allocated among m parallel processors, so as to minimize the maximum time (or cost) on any processor. Our problem is more general, in that we allow the processors to have (a) different initial costs, (b) different utilization levels before new costs are incurred, and (c) different rates of cost increase. A heuristic adapted from the bin-packing problem is shown to provide solutions which are close to optimal as the number of iterations is allowed to increase. Computational testing, over a large number of randomly generated problem instances, suggests that heuristic errors are, on average, very small.  相似文献   

10.
This article is devoted to an MCDM problem connected with locational analysis. The MCDM problem can be formulated so as to minimize the distance between a facility and a given set of points. The efficient points of this problem are candidates for optimal solutions to many location problems. We propose an algorithm to find all efficient points when distance is measured by any polyhedral norm.  相似文献   

11.
In this paper the problem of finding an optimal schedule for the n-job, M-machine flowshop scheduling problem is considered when there is no intermediate space to hold partially completed jobs and the objective function is to minimize the weighted sum of idle times on all machines. By assuming that jobs are processed as early as possible, the problem is modeled as a traveling salesman problem and solved by known solution techniques for the traveling salesman problem. A sample problem is solved and a special case, one involving only two machines, is discussed.  相似文献   

12.
Given a number of patrollers that are required to detect an intruder in a channel, the channel patrol problem consists of determining the periodic trajectories that the patrollers must trace out so as to maximized the probability of detection of the intruder. We formulate this problem as an optimal control problem. We assume that the patrollers' sensors are imperfect and that their motions are subject to turn‐rate constraints, and that the intruder travels straight down a channel with constant speed. Using discretization of time and space, we approximate the optimal control problem with a large‐scale nonlinear programming problem which we solve to obtain an approximately stationary solution and a corresponding optimized trajectory for each patroller. In numerical tests for one, two, and three underwater patrollers, an underwater intruder, different trajectory constraints, several intruder speeds and other specific parameter choices, we obtain new insight—not easily obtained using simply geometric calculations—into efficient patrol trajectory design under certain conditions for multiple patrollers in a narrow channel where interaction between the patrollers is unavoidable due to their limited turn rate.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

13.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   

14.
案例教学法是以案例为媒介的一种启发式教学方法。案例教学在数学教学中有重要作用,它有助于丰富和加深学生对数学理论知识的理解,把握好数学案例教学方法,对于培养和锻炼学生的分析解决实际问题的能力有着积极作用。  相似文献   

15.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   

16.
过椭圆外一定点作其法线的求解分析及其几何逼近作图   总被引:1,自引:0,他引:1  
对过椭圆外一定点的法线作图问题作了探讨,指出了几何作图法的不可解性。根据椭圆与其法线的几何特征关系建立了求解法线的解析方程,分析了法线问题解析求解的繁杂性。提出了一种几何逼近作图方法,并具体给出了该方法的几何作图步骤。  相似文献   

17.
This article considers the order batching problem in steelmaking and continuous‐casting production. The problem is to jointly specify the slabs needed to satisfy each customer order and group all the slabs of different customer orders into production batches. A novel mixed integer programming model is formulated for the problem. Through relaxing the order assignment constraints, a Lagrangian relaxation model is then obtained. By exploiting the relationship between Lagrangian relaxation and column generation, we develop a combined algorithm that contains nested double loops. At the inner loop, the subgradient method is applied for approximating the Lagrangian dual problem and pricing out columns of the master problem corresponding to the linear dual form of the Lagrangian dual problem. At the outer loop, column generation is employed to solve the master problem exactly and adjust Lagrangian multipliers. Computational experiments are carried out using real data collected from a large steel company, as well as on large‐scaled problem instances randomly generated. The results demonstrate that the combined algorithm can obtain tighter lower bound and higher quality solution within an acceptable computation time as compared to the conventional Lagrangian relaxation algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

18.
The segregated storage problem involves the optimal distribution of products among compartments with the restriction that only one product may be stored in each compartment. The storage capacity of each compartment, the storage demand for each product, and the linear cost of storing one unit of a product in a given compartment are specified. The problem is reformulated as a large set-packing problem, and a column generation scheme is devised to solve the associated linear programming problem. In case of fractional solutions, a branch and bound procedure is utilized. Computational results are presented.  相似文献   

19.
This paper develops a method for doing postoptimality analysis on the mixed integer programming problem. The proposed procedures form a natural adjunct to enumerative I.P. algorithms that are linear programming based, and they are designed, in effect, to capitalize on insights generated as the problem is initially solved to do subsequent analysis upon it. In particular, limited ranging analysis is possible on selected parameters, as is the efficient resolving of the problem following parameter changes.  相似文献   

20.
In this article, we consider a situation in which a group of facilities need to be constructed in order to serve a given set of customers. However, the facilities cannot guarantee an absolute coverage to any of the customers. Hence, we formulate this problem as one of maximizing the total service reliability of the system subject to a budgetary constraint. For this problem, we develop and test suitable branch-and-bound algorithms and study the effect of problem parameters on solution difficulty. Some generalizations of this problem are also mentioned as possible extensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号