首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperbolic integer program is treated as a special case of a hyperbolic program with a finite number of feasible points. The continuous hyperbolic program also belongs to this class since its solution can be obtained by considering only the extreme points of the feasible set. A general algorithm for solving the hyperbolic integer program which reduces to solving a sequence of linear integer problems is proposed. When the integer restriction is removed, this algorithm is similar to the Isbell-Marlow procedure. The geometrical aspects of the hyperbolic problem are also discussed and several cutting plane algorithms are given.  相似文献   

2.
The United States military frequently has difficulty retaining enlisted personnel beyond their initial enlistment. A bonus program within each service, called a Selective Reenlistment Bonus (SRB) program, seeks to enhance reenlistments and thus reduce personnel shortages in critical military occupational specialties (MOSs). The amount of bonus is set by assigning “SRB multipliers” to each MOS. We develop a nonlinear integer program to select multipliers which minimize a function of deviations from desired reenlistment targets. A Lagrangian relaxation of a linearized version of the integer program is used to obtain lower bounds and feasible solutions. The best feasible solution, discovered in a coordinate search of the Lagrangian function, is heuristically improved by apportioning unexpended funds. For large problems a heuristic variable reduction is employed to speed model solution. U.S. Army data and requirements for FY87 yield a 0-1 integer program with 12,992 binary variables and 273 constraints, which is solved within 0.00002% of optimality on an IBM 3033AP in less than 1.7 seconds. More general models with up to 463,000 binary variables are solved, on average, to within 0.009% of optimality in less than 1.8 minutes. The U.S. Marine Corps has used a simpler version of this model since 1986. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing. Given multiple demand scenarios together with associated probabilities, our aim is to identify a set of tools that is a good compromise for all these scenarios. More precisely, we formulate a mixed‐integer program in which expected value of the unmet demand is minimized subject to capacity and budget constraints. This is a difficult two‐stage stochastic mixed‐integer program which cannot be solved to optimality in a reasonable amount of time. We instead propose a heuristic that can produce near‐optimal solutions. Our heuristic strengthens the linear programming relaxation of the formulation with cutting planes and performs limited enumeration. Analyses of the results in some real‐life situations are also presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

4.
We present a large‐scale network design model for the outbound supply chain of an automotive company that considers transportation mode selection (road vs. rail) and explicitly models the relationship between lead times and the volume of flow through the nodes of the network. We formulate the problem as a nonlinear zero‐one integer program, reformulate it to obtain a linear integer model, and develop a Lagrangian heuristic for its solution that gives near‐optimal results in reasonable time. We also present scenario analyses that examine the behavior of the supply chain under different parameter settings and the performance of the solution procedures under different experimental conditions. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

5.
In this paper we show that every bounded integer linear program can be transformed into an integer program involving one single linear constraint and upper and lower bounds on the variables, such that the solution space of the original problem coincides with that one of the equivalent knapsack-type problem.  相似文献   

6.
In this paper we show that the Gomory fractional cut (hyperplane) for the integer program is either void of integer points or contains an infinite number of them. The conditions for each case are presented. Also, we derive a stronger cut from the hyperplane which does not intersect integer points.  相似文献   

7.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

8.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

9.
Assigning storage locations to incoming or reshuffled containers is a fundamental problem essential to the operations efficiency of container terminals. The problem is notoriously hard for its combinatorial and dynamic nature. In this article, we minimize the number of reshuffles in assigning storage locations for incoming and reshuffled export containers. For the static problem to empty a given stack without any new container arrival, the optimum reshuffle sequence is identified by an integer program (IP). The integer program captures the evolution of stack configurations as a function of decisions and is of interest by itself. Heuristics based on the integer program are then derived. Their competitiveness in accuracy and time are established by extensive numerical runs comparing them with existing heuristics in literature and in practice as well as with extensions of the existing heuristics. Variants of the IP‐based heuristics are then applied to the dynamic problem with continual retrievals and arrivals of containers. Again, numerical runs confirm that the IP‐based heuristic is competitive. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

10.
We introduce a multi‐period tree network maintenance scheduling model and investigate the effect of maintenance capacity restrictions on traffic/information flow interruptions. Network maintenance refers to activities that are performed to keep a network operational. For linear networks with uniform flow between every pair of nodes, we devise a polynomial‐time combinatorial algorithm that minimizes flow disruption. The spiral structure of the optimal maintenance schedule sheds insights into general network maintenance scheduling. The maintenance problem on linear networks with a general flow structure is strongly NP‐hard. We formulate this problem as a linear integer program, derive strong valid inequalities, and conduct a polyhedral study of the formulation. Polyhedral analysis shows that the relaxation of our linear network formulation is tight when capacities and flows are uniform. The linear network formulation is then extended to an integer program for solving the tree network maintenance scheduling problem. Preliminary computations indicate that the strengthened formulations can solve reasonably sized problems on tree networks and that the intuitions gained from the uniform flow case continue to hold in general settings. Finally, we extend the approach to directed networks and to maintenance of network nodes. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

12.
We solve the problem of optimal allocation of weapons to targets in the presence of layered regional defenses. The general solution technique is an integer program transformable to a minimum-cost network flow. This model assumes the defense has perfect weapons. Results of a small sample scenario are included. Additionally, a representative attrition algorithm is described and the two models combined to form a hybrid algorithm. The hybrid algorithm allows for less-than-perfect weapons while maintaining optimality.  相似文献   

13.
This article addresses the problem of scheduling the United States Navy's Atlantic Fleet to satisfy overseas strategic requirements. An integer programming formulation is developed but results in a model with prohibitive size. This fact and the qualitative nature of additional secondary objectives and constraints suggest an interactive optimization approach. A system that solves a natural relaxation of the integer program within an interactive environment is discussed.  相似文献   

14.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

15.
We consider an expansion planning problem for Waste‐to‐Energy (WtE) systems facing uncertainty in future waste supplies. The WtE expansion plans are regarded as strategic, long term decisions, while the waste distribution and treatment are medium to short term operational decisions which can adapt to the actual waste collected. We propose a prediction set uncertainty model which integrates a set of waste generation forecasts and is constructed based on user‐specified levels of forecasting errors. Next, we use the prediction sets for WtE expansion scenario analysis. More specifically, for a given WtE expansion plan, the guaranteed net present value (NPV) is evaluated by computing an extreme value forecast trajectory of future waste generation from the prediction set that minimizes the maximum NPV of the WtE project. This problem is essentially a multiple stage min‐max dynamic optimization problem. By exploiting the structure of the WtE problem, we show this is equivalent to a simpler min‐max optimization problem, which can be further transformed into a single mixed‐integer linear program. Furthermore, we extend the model to optimize the guaranteed NPV by searching over the set of all feasible expansion scenarios, and show that this can be solved by an exact cutting plane approach. We also propose a heuristic based on a constant proportion distribution rule for the WtE expansion optimization model, which reduces the problem into a moderate size mixed‐integer program. Finally, our computational studies demonstrate that our proposed expansion model solutions are very stable and competitive in performance compared to scenario tree approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 47–70, 2016  相似文献   

16.
The problem considered involves the assignment of n facilities to n specified locations. Each facility has a given nonnegative flow from each of the other facilities. The objective is to minimize the sum of transportation costs. Assume these n locations are given as points on a two-dimensional plane and transportation costs are proportional to weighted rectangular distances. Then the problem is formulated as a binary mixed integer program. The number of integer variables (all binary) involved equals the number of facilities squared. Without increasing the number of integer variables, the formulation is extended to include “site costs” Computational results of the formulation are presented.  相似文献   

17.
In this paper we consider dual angular and angular structured mixed integer programs which arise in some practical applications. For these problems we describe efficient methods for generating a desirable set of Benders' cuts with which one may initialize the partitioning scheme of Benders. Our research is motivated by the computational experience of McDaniel and Devine who have shown that the set of Benders' cuts which are binding at the optimum to the linear relaxation of the mixed integer program, play an important role in determining an optimal mixed integer solution. As incidental results in our development, we provide some useful remarks regarding Benders' and Dantzig-Wolfe's decomposition procedures. The computational experience reported seems to support the expedients recommended in this paper.  相似文献   

18.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

19.
A truncated cube, by which we mean the convex hull of a subset of the vertices of the unit cube, has an outer polar whose facets are a subset of the facets of the octahedron (the outer polar of the cube). We discuss procedures for generating valid truncations of the cube from the problem constraints, in the case of 0-1 integer programs, and for intersecting the halflines defined by the constraints that are tight for a basic solution to the linear program, with successive facets of the outer polars of these truncated cubes. The cutting planes obtained in this way are compared to other cuts.  相似文献   

20.
We consider the problem of optimizing assortments in a multi‐item retail inventory system. In addition to the usual holding and stockout costs, there is a fixed cost for including any item in the assortment. Customers' preferences for items include both probabilistic substitution patterns and the desire to purchase sets of complementary items. We develop a demand model to capture this behavior, and derive tractable approximations that allow us to formulate the optimization problem as a 0–1 mixed integer linear program. Numerical examples are solved to illustrate key insights into how both complementary and substitute items affect the optimal assortment and the expected profit. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 793–822, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号