首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider an inventory system consisting of two installations, the stocking point and the field. Each period two decisions must be made: how much to order from outside the system and how much to ship to the field. The first decision is made based on the total amounts of stock then at the two installations. Next a forecast of the demand in the current period is sent from the field to the stocking point. Based upon a knowledge of the joint distribution of the forecast and the true demand, and the amounts of stock at the two installations, a decision to ship a certain amount of stock to the field is taken. The goal is to make these two decisions so as to minimize the total n-period cost for the system. Following the factorization idea of Clark and Scarf (1960), the optimal n period ordering and shipping policy, taking into account the accuracy of the demand forecasts, can be derived so as to make the calculation comparable to those required by two single installations.  相似文献   

2.
Initial provisioning decisions (inventory stocking requirements) for low demand items often have to be made without much knowledge of what future demand rates will be. When the nature of an item is such that little demand for it is expected, the problem of whether to stock initially or risk not stocking the item is most critical. This report discusses this problem and presents decision procedures which can be used to handle this aspect of initial provisioning. The procedures relate an item's provisioning desirability to its provisioning characteristics, such as expected cost, expected resupply time, current information on its likely demand rate, and to an overall operating policy or criterion. The criterion function measures the total system degredation as a function of the events of having items out of stock when demand occurs. Several different policy functions are discussed and the provisioning decision rules which apply to each are presented. Demand rate information is handled through a Bayesian type approach. The decision rules presented in this report can be utilized to either determine stocking requirements within a budgetary constraint, or determine the relative stocking desirability on an item-by-item basis.  相似文献   

3.
We address the problem of determining optimal ordering and pricing policies in a finite‐horizon newsvendor model with unobservable lost sales. The demand distribution is price‐dependent and involves unknown parameters. We consider both the cases of perishable and nonperishable inventory. A very general class of demand functions is studied in this paper. We derive the optimal ordering and pricing policies as unique functions of the stocking factor (which is a linear transformation of the safety factor). An important expression is obtained for the marginal expected value of information. As a consequence, we show when lost sales are unobservable, with perishable inventory the optimal stocking factor is always at least as large as the one given by the single‐period model; however, if inventory is nonperishable, this result holds only under a strong condition. This expression also helps to explain why the optimal stocking factor of a period may not increase with the length of the problem. We compare this behavior with that of a full information model. We further examine the implications of the results to the special cases when demand uncertainty is described by additive and multiplicative models. For the additive case, we show that if demand is censored, the optimal policy is to order more as well as charge higher retail prices when compared to the policies in the single‐period model and the full information model. We also compare the optimal and myopic policies for the additive and multiplicative models. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
We analyze a general but parsimonious price competition model for an oligopoly in which each firm offers any number of products. The demand volumes are general piecewise affine functions of the full price vector, generated as the “regular” extension of a base set of affine functions. The model specifies a product assortment, along with their prices and demand volumes, in contrast to most commonly used demand models. We identify a fully best response operator which is monotonically increasing so that the market converges to a Nash equilibrium, when firms dynamically adjust their prices, as best responses to their competitors' prices, at least when starting in one of two price regions. Moreover, geometrically fast convergence to a common equilibrium can be guaranteed for an arbitrary starting point, under an additional condition for the price sensitivity matrix.  相似文献   

5.
Optimal operating policies and corresponding managerial insight are developed for the decision problem of coordinating supply and demand when (i) both supply and demand can be influenced by the decision maker and (ii) learning is pursued. In particular, we determine optimal stocking and pricing policies over time when a given market parameter of the demand process, though fixed, initially is unknown. Because of the initially unknown market parameter, the decision maker begins the problem horizon with a subjective probability distribution associated with demand. Learning occurs as the firm monitors the market's response to its decisions and then updates its characterization of the demand function. Of primary interest is the effect of censored data since a firm's observations often are restricted to sales. We find that the first‐period optimal selling price increases with the length of the problem horizon. However, for a given problem horizon, prices can rise or fall over time, depending on how the scale parameter influences demand. Further results include the characterization of the optimal stocking quantity decision and a computationally viable algorithm. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 303–325, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10013  相似文献   

6.
This paper studies the one-period, general network distribution problem with linear costs. The approach is to decompose the problem into a transportation problem that represents a stocking decision, and into decoupled newsboy problems that represent the realization of demand with the usual associated holding and shortage costs. This approach leads to a characterization of optimal policies in terms of the dual of the transportation problem. This method is not directly suitable for the solution for large problems, but the exact solution for small problems can be obtained. For the numerical solutions of large problems, the problem has been formulated as a linear program with column generation. This latter approach is quite robust in the sense that it is easily extended to incorporate capacity constraints and the multiproduct case.  相似文献   

7.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

8.
This study concentrates on distributions of leadtime demand that permit explicit solution to the lot-size, reorder point model. The optimal order size for the general case is first expressed as a function of the economic order quantity and a quantity known as the “residual mean life” in reliability theory. The concept of “no aging” is then utilized to identify a broad class of distributions for which the optimal order size can be determined explicitly, independent of the reorder point.  相似文献   

9.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

10.
The bottleneck transportation problem can be stated as follows: A set of supplies and a set of demands are specified such that the total supply is equal to the total demand. There is a transportation time associated between each supply point and each demand point. It is required to find a feasible distribution (of the supplies) which minimizes the maximum transportaton time associated between a supply point and a demand point such that the distribution between the two points is positive. In addition, one may wish to find from among all optimal solutions to the bottleneck transportation problem, a solution which minimizes the total distribution that requires the maximum time Two algorithms are given for solving the above problems. One of them is a primal approach in the sense that improving fcasible solutions are obtained at each iteration. The other is a “threshold” algorithm which is found to be far superior computationally.  相似文献   

11.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   

12.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

13.
Given point-to-point demand forecasts of transmission facilities for services such as voice or data transmission in each period of a finite planning horizon, a decision has to be made as to which types of transmission facilities—together with the amounts of transmission circuits—are to be installed, if any, on each link of the telecommunications network, in each period of the planning horizon. The availability of alternative transmission systems with significantly different costs and circuit capacities necessitates the determination of a minimum (discounted) cost facility installation scheme. This combinatoric choice problem is complicated by the availability of switching equipments enabling the transmission of some of the traffic through intermediary points. This possibility of alternately routing the traffic or the facility requirements of certain point pairs further complicates the problem while creating the opportunity to benefit from economies of scale. We present here a heuristic method for finding a good solution for the general problem; namely, we consider multiple transmission systems and multiple alternate routes. Numerical examples are given and computational experience is reported.  相似文献   

14.
The problem dealt with in this article is as follows. There are n “demand points” on a sphere. Each demand point has a weight which is a positive constant. A facility must be located so that the maximum of the weighted distances (distances are the shortest arcs on the surface of the sphere) is minimized; this is called the minimax problem. Alternatively, in the maximin problem, the minimum weighted distance is maximized. A setup cost associated with each demand point may be added for generality. It is shown that any maximin problem can be reparametrized into a minimax problem. A method for finding local minimax points is described and conditions under which these are global are derived. Finally, an efficient algorithm for finding the global minimax point is constructed.  相似文献   

15.
In this study, we consider n firms, each of which produces and sells a different product. The n firms face a common demand stream which requests all their products as a complete set. In addition to the common demand stream, each firm also faces a dedicated demand stream which requires only its own product. The common and dedicated demands are uncertain and follow a general, joint, continuous distribution. Before the demands are realized, each firm needs to determine its capacity or production quantity to maximize its own expected profit. We formulate the problem as a noncooperative game. The sales price per unit for the common demand could be higher or lower than the unit price for the dedicated demand, which affects the firm's inventory rationing policy. Hence, the outcome of the game varies. All of the prices are first assumed to be exogenous. We characterize Nash equilibrium(s) of the game. At the end of the article, we also provide some results for the endogenous pricing. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 59: 146–159, 2012  相似文献   

16.
In this study, we analyze the joint pricing and inventory management during new product introduction when product shortage creates additional demand due to hype. We develop a two‐period model in which a firm launches its product at the beginning of the first period, before it observes sales in the two periods. The product is successful with an exogenous probability, or unsuccessful with the complementary probability. The hype in the second period is observed only when the product is successful. The firm learns the actual status of the product only after observing the first‐period demand. The firm must decide the stocking level and price of the product jointly at the beginning of each of the two periods. In this article, we derive some structural properties of the optimal prices and inventory levels, and show that (i) firms do not always exploit hype, (ii) firms do not always increase the price of a successful product in the second period, (iii) firms may price out an unsuccessful product in the first period if the success probability is above a threshold, and (iv) such a threshold probability is decreasing in the first‐period market potential of the successful product. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 304–320, 2015  相似文献   

17.
An equity model between groups of demand points is proposed. The set of demand points is divided into two or more groups. For example, rich and poor neighborhoods and urban and rural neighborhoods. We wish to provide equal service to the different groups by minimizing the deviation from equality among groups. The distance to the closest facility is a measure of the quality of service. Once the facilities are located, each demand point has a service distance. The objective function, to be minimized, is the sum of squares of differences between all pairs of service distances between demand points in different groups. The problem is analyzed and solution techniques are proposed for the location of a single facility in the plane. Computational experiments for problems with up to 10,000 demand points and rectilinear, Euclidean, or general ?p distances illustrate the efficiency of the proposed algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

18.
This article analyzes a capacity/inventory planning problem with a one‐time uncertain demand. There is a long procurement leadtime, but as some partial demand information is revealed, the firm is allowed to cancel some of the original capacity reservation at a certain fee or sell off some inventory at a lower price. The problem can be viewed as a generalization of the classic newsvendor problem and can be found in many applications. One key observation of the analysis is that the dynamic programming formulation of the problem is closely related to a recursion that arises in the study of a far more complex system, a series inventory system with stochastic demand over an infinite horizon. Using this equivalence, we characterize the optimal policy and assess the value of the additional demand information. We also extend the analysis to a richer model of information. Here, demand is driven by an underlying Markov process, representing economic conditions, weather, market competition, and other environmental factors. Interestingly, under this more general model, the connection to the series inventory system is different. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 2012  相似文献   

19.
In this article we have generalized previous models on multiechelon recoverable inventory systems to cover the cases of batch ordering and shipment policy, and when items can either be repaired or condemned. The batch ordering and shipment policy is appropriate when the setup cost for shipment and order and/or the demand rates of the items are relatively high. The operating characteristics of such a system have been studied. Specifically, the probability distribution of backorder levels at the bases are analyzed for different repair-time distributions. An approximation scheme is proposed for this distribution, and is evaluated using extensive simulation results. The results indicate that the scheme is very effective in providing near-optimal stocking levels in such a system.  相似文献   

20.
This article examines a relaxed version of the generic vehicle routing problem. In this version, a delivery to a demand point can be split between any number of vehicles. In spite of this relaxation the problem remains computationally hard. Since only small instances of the vehicle routing problem are known to be solved using exact methods, the vehicle route construction for this problem version is approached using heuristic rules. The main contribution of this article to the existing body of literature on vehicle routing issues in (a) is presenting a new vehicle routing problem amenable to practical applications, and (b) demonstrating the potential for cost savings over similar “traditional” vehicle routing when implementing the model and solutions presented here. The solution scheme allowing for split deliveries is compared with a solution in which no split deliveries are allowed. The comparison is conducted on six sets of 30 problems each for problems of size 75, 115, and 150 demand points (all together 540 problems). For very small demands (up to 10% of vehicle's capacity) no significant difference in solutions is evident for both solution schemes. For the other five problem sets for which point demand exceeds 10% of vehicle's capacity, very significant cost savings are realized when allowing split deliveries. The savings are significant both in the total distance and the number of vehicles required. The vehicles' routes constructed by our procedure tend to cover cohesive geographical zones and retain some properties of optimal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号