首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known to be real that the per unit transportation cost from a specific supply source to a given demand sink is dependent on the quantity shipped, so that there exist finite intervals for quantities where price breaks are offered to customers. Thus, such a quantity discount results in a nonconvex, piecewise linear functional. In this paper, an algorithm is provided to solve this problem. This algorithm, with minor modifications, is shown to encompass the “incremental” quantity discount and the “fixed charge” transportation problems as well. It is based upon a branch-and-bound solution procedure. The branches lead to ordinary transportation problems, the results of which are obtained by utilizing the “cost operator” for one branch and “rim operator” for another branch. Suitable illustrations and extensions are also provided.  相似文献   

2.
The gradual covering problem   总被引:1,自引:0,他引:1  
In this paper we investigate the gradual covering problem. Within a certain distance from the facility the demand point is fully covered, and beyond another specified distance the demand point is not covered. Between these two given distances the coverage is linear in the distance from the facility. This formulation can be converted to the Weber problem by imposing a special structure on its cost function. The cost is zero (negligible) up to a certain minimum distance, and it is a constant beyond a certain maximum distance. Between these two extreme distances the cost is linear in the distance. The problem is analyzed and a branch and bound procedure is proposed for its solution. Computational results are presented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

3.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
The basic single-product dynamic lot-sizing problem involves determining the optimal batch production schedule to meet a deterministic, discrete-in-time, varying demand pattern subject to linear setup and stockholding costs. The most widely known procedure for deriving the optimal solution is the Wagner-Whitin algorithm, although many other approaches have subsequently been developed for tackling the same problem. The objective of this note is to show how these procedures can readily be adapted when the input is a finite rate production process. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 221–228, 1997  相似文献   

5.
We consider a single-product, discrete-time production/inventory-control problem with nonstationary concave nondecreasing costs. Given a forecast horizon K, the problem is to find a decision horizon. We specialize to piecewise linear costs a general approach whereby a problem with horizon K + 1 and arbitrary final demand is parametrically solved. The resulting algorithm is polynomial in the input size.  相似文献   

6.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

7.
Inventory systems with returns are systems in which there are units returned in a repairable state, as well as demands for units in a serviceable state, where the return and demand processes are independent. We begin by examining the control of a single item at a single location in which the stationary return rate is less than the stationary demand rate. This necessitates an occasional procurement of units from an outside source. We present a cost model of this system, which we assume is managed under a continuous review procurement policy, and develop a solution method for finding the policy parameter values. The key to the analysis is the use of a normally distributed random variable to approximate the steady-state distribution of net inventory. Next, we study a single item, two echelon system in which a warehouse (the upper echelon) supports N(N ? 1) retailers (the lower echelon). In this case, customers return units in a repairable state as well as demand units in a serviceable state at the retailer level only. We assume the constant system return rate is less than the constant system demand rate so that a procurement is required at certain times from an outside supplier. We develop a cost model of this two echelon system assuming that each location follows a continuous review procurement policy. We also present an algorithm for finding the policy parameter values at each location that is based on the method used to solve the single location problem.  相似文献   

8.
A deterministic capacity expansion model for two facility types with a finite number of discrete time periods is described. The model generalizes previous work by allowing for capacity disposals, in addition to capacity expansions and conversions from one facility type to the other. Furthermore, shortages of capacity are allowed and upper bounds on both shortages and idle capacities can be imposed. The demand increments for additional capacity of any type in any time period can be negative. All cost functions are assumed to be piecewise, concave and nondecreasing away from zero. The model is formulated as a shortest path problem for an acyclic network, and an efficient search procedure is developed to determine the costs associated with the links of this network.  相似文献   

9.
In this article we develop a heuristic procedure for a multiproduct dynamic lot-sizing problem. In this problem a joint setup cost is incurred when at least one product is ordered in a period. In addition to the joint setup cost a separate setup cost for each product ordered is also incurred. The objective is to determine the product lot sizes, over a finite planning horizon, that will minimize the total relevant cost such that the demand in each period for each product is satisfied without backlogging. In this article we present an effective heuristic procedure for this problem. Computational results for the heuristic procedure are also reported. Our computational experience leads us to conclude that the heuristic procedure may be of considerable value as a decision-making aid to production planners in a real-world setting. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.  相似文献   

11.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   

12.
The segregated storage problem involves the optimal distribution of products among compartments with the restriction that only one product may be stored in each compartment. The storage capacity of each compartment, the storage demand for each product, and the linear cost of storing one unit of a product in a given compartment are specified. The problem is reformulated as a large set-packing problem, and a column generation scheme is devised to solve the associated linear programming problem. In case of fractional solutions, a branch and bound procedure is utilized. Computational results are presented.  相似文献   

13.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

14.
This article presents research designed to aid firms who assemble many components into a final product. We assume that purchase quantities are fixed, and that all parts and components are assembled at one stage in a short time. Demand for the final product is represented by a stationary independent and identically distributed random variable; and unmet demand is backordered. Ordering is done on a periodic review basis. We develop infinite horizon, approximate expected cost, and expected service level functions, and we present an algorithm for finding approximately minimum cost reorder points for each part subject to a service level constraint. Extensive results on the accuracy of the approximations are presented. Due to the size of the problem, we present only limited results on the performance of the optimization algorithm.  相似文献   

15.
We consider a class of facility location problems with a time dimension, which requires assigning every customer to a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a minimum cost via its production and inventory decisions. We provide exact branch‐and‐price algorithms for this class of problems and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue from selected orders minus production‐planning‐related costs incurred in fulfilling the selected orders. We provide polynomial‐time dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing indicates the advantage of our branch‐and‐price algorithm over various approaches that use commercial software packages. These tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
We present a stochastic optimization model for planning capacity expansion under capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although the methodology can be used in other applications. The goals of the model are deciding which energy types must be installed, and when. Another goal is providing an initial generation plan for short periods of the planning horizon that might be adequately modified in real time assuming penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is a random vector. The cost of the risk associated with decisions that may need some tuning in the future is included in the objective function. The proposed scheme to solve the nonlinear stochastic optimization model is Generalized Benders' decomposition. We also exploit the Benders' subproblem structure to solve it efficiently. Computational results for moderate‐size problems are presented along with comparison to a general‐purpose nonlinear optimization package. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:662–683, 2001  相似文献   

17.
We study a deterministic lot-size problem, in which the demand rate is a (piecewise) continuous function of time and shortages are backordered. The problem is to find the order points and order quantities to minimize the total costs over a finite planning horizon. We show that the optimal order points have an interleaving property, and when the orders are optimally placed, the objective function is convex in the number of orders. By exploiting these properties, an algorithm is developed which solves the problem efficiently. For problems with increasing (decreasing) demand rates and decreasing (increasing) cost rates, monotonicity properties of the optimal order quantities and order intervals are derived.  相似文献   

18.
Inventory models of modern production and service operations should take into consideration possible exogenous failures or the abrupt decline of demand resulting from obsolescence. This article analyzes continuous-review versions of the classical obsolescence problem in inventory theory. We assume a deterministic demand model and general continuous random times to obsolescence (“failure”). Using continuous dynamic programming, we investigate structural properties of the problem and propose explicit and workable solution techniques. These techniques apply to two fairly wide (and sometimes overlapping) classes of failure distributions: those which are increasing in failure rate and those which have finite support. Consequently, several specific failure processes in continuous time are given exact solutions. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 757–774, 1997  相似文献   

19.
I examine the problem of determining inventory stockage levels and locations of different parts in a multiechelon system. This stockage problem is complicated by parts commonality—each part may be used by several different end items. Stockage levels and locations of each part affect the availability of end items that use the part, since an end item will be out of service if it requires a part that is not available. Of course, if the part is available at another nearby location, then the end item will be out of service for a shorter period of time. An essential feature of any model for this problem is constraints on operational availability of the end items. Because these constraints would involve nonconvex functions if the stockage levels were allowed to vary continuously, I formulate a 0–1 linear optimization model of the stockage problem. In this model, each part can be stocked at any of a number of prespecified levels at each echelon. The model is to minimize stockage cost of the selected items subject to the end-item availability constraints and limits on the total weight, volume, and number of different parts stocked at each echelon. Advantages and disadvantages of different Lagrangian relaxations and the simplex method with generalized upper-bounding capability are discussed for solving this stockage model.  相似文献   

20.
Among the many tools of the operations researcher is the transportation algorithm which has been used to solve a variety of problems ranging from shipping plans to plant location. An important variation of the basic transportation problem is the transportation problem with stochastic demand or stochastic supply. This paper presents a simple approximation technique which may be used as a starting solution for algorithms that determine exact solutions. The paper indicates that the approximation technique offered here is superior to a starting solution obtained by substituting expected demand for the random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号