首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem treated here involves a mixed fleet of vehicles comprising two types of vehicles: K1 tanker-type vehicles capable of refueling themselves and other vehicles, and K2 nontanker vehicles incapable of refueling. The two groups of vehicles have different fuel capacities as well as different fuel consumption rates. The problem is to find the tanker refueling sequence that maximizes the range attainable for the K2 nontankers. A tanker refueling sequence is a partition of the tankers into m subsets (2 ≤ mK1). A given sequence of the partition provides a realization of the number of tankers participating in each successive refueling operation. The problem is first formulated as a nonlinear mixed-integer program and reduced to a linear program for a fixed sequence which may be solved by a simple recursive procedure. It is proven that a “unit refueling sequence” composed of one tanker refueling at each of K1 refueling operations is optimal. In addition, the problem of designing the “minimum fleet” (minimum number of tankers) required for a given set of K2 nontankers to attain maximal range is resolved. Also studied are extensions to the problem with a constraint on the number of refueling operations, different nontanker recovery base geometry, and refueling on the return trip.  相似文献   

2.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

3.
The focus of this research is on self-contained missions requiring round-trip vehicle travel from a common origin. For a single vehicle the maximal distance that can be reached without refueling is defined as its operational range. Operational range is a function of a vehicle's fuel capacity and fuel consumption characteristics. In order to increase a vehicle's range beyond its operational range replenishment from a secondary fuel source is necessary. In this article, the problem of maximizing the range of any single vehicle from a fleet of n vehicles is investigated. This is done for four types of fleet configurations: (1) identical vehicles, (2) vehicles with identical fuel consumption rates but different fuel capacities, (3) vehicles which have the same fuel capacity but different fuel consumption rates, and (4) vehicles with both different fuel capacities and different consumption rates. For each of the first three configurations the optimal refueling policy that provides the maximal range is determined for a sequential refueling chain strategy. In such a strategy the last vehicle to be refueled is the next vehicle to transfer its fuel. Several mathematical programming formulations are given and their solutions determined in closed form. One of the major conclusions is that for an identical fleet the range of the farthest vehicle can be increased by at most 50% more than the operational range of a single vehicle. Moreover, this limit is reached very quickly with small values of n. The performance of the identical fleet configuration is further investigated for a refueling strategy involving a multiple-transfer refueling chain, stochastic vehicle failures, finite refueling times, and prepositioned fleets. No simple refueling ordering rules were found for the most general case (configuration 4). In addition, the case of vehicles with different fuel capacities is investigated under a budget constraint. The analysis provides several benchmarks or bounds for which more realistic structures may be compared. Some of the more complex structures left for future study are described.  相似文献   

4.
Consider an experiment in which only record-breaking values (e.g., values smaller than all previous ones) are observed. The data available may be represented as X1,K1,X2,K2, …, where X1,X2, … are successive minima and K1,K2, … are the numbers of trials needed to obtain new records. Such data arise in life testing and stress testing and in industrial quality-control experiments. When only a single sequence of random records are available, efficient estimation of the underlying distribution F is possible only in a parametric framework (see Samaniego and Whitaker [9]). In the present article we study the problem of estimating certain population quantiles nonparametrically from such data. Furthermore, under the assumption that the process of observing random records can be replicated, we derive and study the nonparametric maximum-likelihood estimator F̂ of F. We establish the strong uniform consistency of this estimator as the number of replications grows large, and identify its asymptotic distribution theory. The performance of F̂ is compared to that of two possible competing estimators.  相似文献   

5.
In a variety of industrial situations experimental outcomes are only record-breaking observations. The data available may be represented as X1, K1., X2, K2,…, where X1, X2,… are the successive minima and K1, K2, … are the number of trials needed to obtain new records. Samaniego and Whitaker [11, 12] discussed the problem of estimating the survival function in both parametric and nonparametric setups when the data consisted of record-breaking observations. In this article we derive nonparametric Bayes and empirical Bayes estimators of the survival function for such data under a Dirichlet process prior and squared error loss. Furthermore, under the assumptions that the process of observing random records can be replicated, the weak convergence of the Bayes estimator is studied as the number of replications grows large. The calculations involved are illustrated by adopting Proschan's [9] data on successive failure times of air conditioning units on Boeing aircraft, for our purpose. The nonparametric maximum likelihood estimators of the survival function for different choices of the prior are displayed for comparison purposes.  相似文献   

6.
The paper discusses mathematical properties of the well-known Bellman-Johnson 3 × n sequencing problem. Optimal rules for some special cases are developed. For the case min Bi ≥ maxAj we find an optimal sequence of the 2 × n problem for machines B and C and move one item to the front of the sequence to minimize (7); when min Bi ≥ max Cj we solve a 2 × n problem for machines A and B and move one item to the end of the optimal sequence so as to minimize (9). There is also given a sufficient optimality condition for a solution obtained by Johnson's approximate method. This explains why this method so often produces an optimal solution.  相似文献   

7.
The problem posed in this paper is to sequence or route n jobs, each originating at a particular location or machine, undergoing r?1 operations or repairs, and terminating at the location or machine from which it originated. The problem is formulated as a 0-1 integer program, with block diagonal structure, comprised of r assignment subproblems; and a joint set of constraints to insure cyclical squences. To obtain integer results the solutions to each subproblem are ranked as required and combinations thereof are implicitly enumerated. The procedure may be terminated at any step to obtain an approximate solution. Some limited computational results are presented.  相似文献   

8.
A number of results pertaining to preservation of aging properties (IFR, IFRA etc.) under various shock models are available in the literature. Our aim in this paper is to examine in the same spirit, the preservation of unimodality under various shock models. For example, it is proved that in a non-homogeneous Poisson shock model if {pk}K≥0, the sequence of probabilities with which the device fails on the kth shock, is unimodal then under some suitable conditions on the mean value function Λ (t), the corresponding survival function is also unimodal. The other shock models under which the preservation of unimodality is considered in this paper are pure birth shock model and a more general shock model in which shocks occur according to a general counting process. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 952–957, 1999  相似文献   

9.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

10.
Consider a two machine flow shop and n jobs. The processing time of job j on machine i is equal to the random variable Xij One of the two machines is subject to breakdown and repair. The objective is to find the schedule that minimizes the expected makespan. Two results are shown. First, ifP(X2j ≧ X1j) = 1 for all j and the random variables X11, X12,…, X1n are likelihood ratio ordered, then the SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process; if P(X1j≧X2j) = 1 and X21, X22,….,X2n are likelihood ratio ordered, then the LEPT sequence minimizes the expected makespan when machine 1 is subject to an arbitrary breakdown process. A generalization is presented for flow shops with m machines. Second, consider the case where X1j and X2j are i.i.d. exponentially distributed with rate λj. The SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process and the LEPT sequence is optimal when machine 1 is subject to an arbitrary breakdown process. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ21. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.  相似文献   

12.
Consider an experiment in which only record-breaking values (e.g., values smaller than all previous ones) are observed. The data available may be represented as X1,K1,X2,K2, …, where X1,X2, … are successive minima and K1,K2, … are the numbers of trials needed to obtain new records. We treat the problem of estimating the mean of an underlying exponential distribution, and we consider both fixed sample size problems and inverse sampling schemes. Under inverse sampling, we demonstrate certain global optimality properties of an estimator based on the “total time on test” statistic. Under random sampling, it is shown than an analogous estimator is consistent, but can be improved for any fixed sample size.  相似文献   

13.
We study a class of new scheduling problems which involve types of teamwork tasks. Each teamwork task consists of several components, and requires a team of processors to complete, with each team member to process a particular component of the task. Once the processor completes its work on the task, it will be available immediately to work on the next task regardless of whether the other components of the last task have been completed or not. Thus, the processors in a team neither have to start, nor have to finish, at the same time as they process a task. A task is completed only when all of its components have been processed. The problem is to find an optimal schedule to process all tasks, under a given objective measure. We consider both deterministic and stochastic models. For the deterministic model, we find that the optimal schedule exhibits the pattern that all processors must adopt the same sequence to process the tasks, even under a general objective function GC = F(f1(C1), f2(C2), … , fn(Cn)), where fi(Ci) is a general, nondecreasing function of the completion time Ci of task i. We show that the optimal sequence to minimize the maximum cost MC = max fi(Ci) can be derived by a simple rule if there exists an order f1(t) ≤ … ≤ fn(t) for all t between the functions {fi(t)}. We further show that the optimal sequence to minimize the total cost TC = ∑ fi(Ci) can be constructed by a dynamic programming algorithm. For the stochastic model, we study three optimization criteria: (A) almost sure minimization; (B) stochastic ordering; and (C) expected cost minimization. For criterion (A), we show that the results for the corresponding deterministic model can be easily generalized. However, stochastic problems with criteria (B) and (C) become quite difficult. Conditions under which the optimal solutions can be found for these two criteria are derived. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

14.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

15.
For each n., X1(n), X2(n), …, Xn(n) are IID, with common pdf fn(x). y1(n) < … < Yn (n) are the ordered values of X1 (n), …, Xn(n). Kn is a positive integer, with lim Kn = ∞. Under certain conditions on Kn and fn (x), it was shown in an earlier paper that the joint distribution of a special set of Kn + 1 of the variables Y1 (n), …, Yn (n) can be assumed to be normal for all asymptotic probability calculations. In another paper, it was shown that if fn (x) approaches the pdf which is uniform over (0, 1) at a certain rate as n increases, then the conditional distribution of the order statistics not in the special set can be assumed to be uniform for all asymptotic probability calculations. The present paper shows that even if fn (x) does not approach the uniform distribution as n increases, the distribution of the order statistics contained between order statistics in the special set can be assumed to be the distribution of a quadratic function of uniform random variables, for all asymptotic probability calculations. Applications to statistical inference are given.  相似文献   

16.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   

17.
This paper considers a group of S identical aircraft, each of which is partitioned into K parts which fail exponentially. The only way in which a failed aircraft can be repaired is by cannibalizing its out-of-commission parts from other failed aircraft. The evolution of the number of good aircraft over time is governed by the transient behavior of an absorbing Markov chain. We can therefore study this behavior by matrix multiplication although the computational problem grows large for K ≥ 3. Some numerical results and some approximations are also provided.  相似文献   

18.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

19.
Job shop scheduling with a bank of machines in parallel is important from both theoretical and practical points of view. Herein we focus on the scheduling problem of minimizing the makespan in a flexible two-center job shop. The first center consists of one machine and the second has k parallel machines. An easy-to-perform approximate algorithm for minimizing the makespan with one-unit-time operations in the first center and k-unit-time operations in the second center is proposed. The algorithm has the absolute worst-case error bound of k − 1 , and thus for k = 1 it is optimal. Importantly, it runs in linear time and its error bound is independent of the number of jobs to be processed. Moreover, the algorithm can be modified to give an optimal schedule for k = 2 .  相似文献   

20.
Mehrez, Stern, and Ronen have defined a vehicle refueling problem in which a fleet of vehicles travels on a round-trip, self-contained mission from a common origin, with the objective of maximizing the operational range of the fleet. They have defined a “pure refueling chain” strategy for transferring fuel between vehicles in the fleet, and have solved the problem in the special cases when all vehicles have the same fuel capacity or consumption rate. In this article we present algorithms for the general case, where vehicles have different capacities and consumption rates. Our approach is based on a new primal dual formulation of the problem. The exact algorithm was effective to find the optimal solution for a fleet size n ⩽13. For larger fleets, we present an approximation version of it, which very quickly found a solution within 1% of the maximum possible range for arbitrarily large (up to n = 200) fleets. We also show that a small number of the best vehicles can always reach almost the same range as a large fleet. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号