首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chief problems considered are: (1) In a parallel set of warehouses, how should stocks be allocated? (2) In a system consisting of a central warehouse and several subsidiary warehouses, how much stock should be carried in each? The demands may have known, or unknown, distribution functions. For problem (1), the i-th stock ni should usually be allocated in proportion to the i-th demand mi; in special cases, a significant improvement is embodied in the formula (N = total allocable stock)

  相似文献   


2.
In this article an algorithm for computing upper and lower ? approximations of a (implicitly or explicitly) given convex function h defined on an interval of length T is developed. The approximations can be obtained under weak assumptions on h (in particular, no differentiability), and the error decreases quadratically with the number of iterations. To reach an absolute accuracy of ? the number of iterations is bounded by

  相似文献   


3.
The author, in an expository paper [4], has presented an algorithm for choosing a non-negative vector

  相似文献   


4.
This paper deals with the bulk arrival queueing system MX/G/1 and its ramifications. In the system MX/G/1, customers arrive in groups of size X (a random variable) by a Poisson process, the service times distribution is general, and there is a single server. Although some results for this queueing system have appeared in various books, no unified account of these, as is being presented here, appears to have been reported so far. The chief objectives of the paper are (i) to unify by an elegant procedure the relationships between the p.g.f.'s

  相似文献   


5.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

6.
Let be a basic solution to the linear programming problem subject to: where R is the index set associated with the nonbasic variables. If all of the variables are constrained to be nonnegative integers and xu is not an integer in the basic solution, the linear constraint is implied. We prove that including these “cuts” in a specified way yields a finite dual simplex algorithm for the pure integer programming problem. The relation of these modified Dantzig cuts to Gomory cuts is discussed.  相似文献   

7.
Bounds for P(X + X ⩽ k2σ) are given where X1 and X2 are independent normal variables having zero means and variances σ, σ, respectively. This is generalized when X1 and X2 are dependent variables with known covariance matrix.  相似文献   

8.
Let us assume that observations are obtained at random and sequentially from a population with density function In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions Where δ(XI,…,XN) is a suitable estimator of μ based on the random sample (X1,…, XN), N is a stopping variable, and A and p are given constants. To study the performance of the rule it is compared with corresponding “optimum fixed sample procedures” with known σ by comparing expected sample sizes and expected costs. It is shown that the rule is “asymptotically efficient” when absolute loss (p=-1) is used whereas the one based on squared error (p = 2) is not. A table is provided to show that in small samples similar conclusions are also true.  相似文献   

9.
Additive convolution of unimodal and α‐unimodal random variables are known as an old classic problem which has attracted the attention of many authors in theory and applied fields. Another type of convolution, called multiplicative convolution, is rather younger. In this article, we first focus on this newer concept and obtain several useful results in which the most important ones is that if is logconcave then so are and for some suitable increasing functions ?. This result contains and as two more important special cases. Furthermore, one table including more applied distributions comparing logconcavity of f(x) and and two comprehensive implications charts are provided. Then, these fundamental results are applied to aging properties, existence of moments and several kinds of ordered random variables. Multiplicative strong unimodality in the discrete case is also introduced and its properties are investigated. In the second part of the article, some refinements are made for additive convolutions. A remaining open problem is completed and a conjecture concerning convolution of discrete α‐unimodal distributions is settled. Then, we shall show that an existing result regarding convolution of symmetric discrete unimodal distributions is not correct and an easy alternative proof is presented. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 109–123, 2016  相似文献   

10.
A unifying survey of the literature related to the knapsack problem; that is, maximize \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_i {v_i x_{i,} } $\end{document}, subject to \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_j {w_i x_i W} $\end{document} and xi ? 0, integer; where vi, wi and W are known integers, and wi (i = 1, 2, …, N) and W are positive. Various uses, including those in group theory and in other integer programming algorithms, as well as applications from the literature, are discussed. Dynamic programming, branch and bound, search enumeration, heuristic methods, and other solution techniques are presented. Computational experience, and extensions of the knapsack problem, such as to the multi-dimensional case, are also considered.  相似文献   

11.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

12.
This paper considers the problem of the optimal redeployment of a resource among different geographical locations. Initially, it is assumed that at each location i, i = 1,…, n, the level of availability of the resource is given by a1 ≧ 0. At time t > 0, requirements Rf(t) ≧ 0 are imposed on each location which, in general, will differ from the a1. The resource can be transported from any one location to any other in magnitudes which will depend on t and the distance between these locations. It is assumed that ΣRj > Σat The objective function consideis, in addition to transportation costs incurred by reallocation, the degree to which the resource availabilities after redeployment differ from the requirements. We shall associate the unavailabilities at the locations with the unreadiness of the system and discuss the optimal redeployment in terms of the minimization of the following functional forms: \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj) + } $\end{document} transportation costs, Max \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {Max}\limits_j \,[kj(Rj - yj)] + $\end{document} transportation costs, and \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj)^2 + } $\end{document} transportation costs. The variables yj represent the final amount of the resource available at location j. No benefits are assumed to accrue at any location if yj > Rj. A numerical three location example is given and solved for the linear objective.  相似文献   

13.
We consider single-server queueing systems with the queue discipline “first come, first served,” interarrival times {uk, k ≥ l}, and service times {uk, k ≥ l}, where the {uk} and {uk} are independent sequences of non-negative random variables that are independently but not necessarily identically distributed. Let Xk = uk − uk (k ≥ 1), S0 0, Sn = X1 + X2 … + Xn(n≥1). It is known that the (possibly nonhomogeneous) random walk {Sn} determines the behavior of the system. In this paper we make stochastic comparisons of two such systems σ12 whose basic random variables X and X are stochastically ordered. The corresponding random walks are also similarly ordered, and this leads to stochastic comparisons of idle times, duration of busy period and busy cycles, number of customers served during a busy period, and output from the system. In the classical case of identical distributions of {uk} and {uk} we obtain further comparisons. Our results are for the transient behavior of the systems, not merely for steady state.  相似文献   

14.
Variations of Hale's channel assignment problem, the L(j, k)‐labeling problem and the radio labeling problem require the assignment of integers to the vertices of a graph G subject to various distance constraints. The λj,k‐number of G and the radio number of G are respectively the minimum span among all L(j, k)‐labelings, and the minimum span plus 1 of all radio labelings of G (defined in the Introduction). In this paper, we establish the λj,k‐number of ∏ K for pairwise relatively prime integers t1 < t2 < … < tq, t1 ≥ 2. We also show the existence of an infinite class of graphs G with radio number |V(G)| for any diameter d(G). © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

15.
Let Xi be independent IFR random variables and let Yi be independent exponential random variables such that E[Xi]=E[Yi] for all i=1, 2, ? n. Then it is well known that E[min (Xi)] ≥E[min (Xi)]. Nevertheless, for 1≤i≤n exponentially distributed Xi's and for a decreasing convex function ?(.). it is shown that .  相似文献   

16.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

17.
Different properties of the HNBUE (HNWUE) class of life distributions (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx\, \le \,(\ge)\,\mu }\]$\end{document} exp(?t/μ) for t ≥ 0, where μ = \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx}$\end{document} are presented. For instance we characterize the HNBUE (HNWUE) property by using the Laplace transform and present some bounds on the survival function of a HNBUE (HNWUE) life distribution. We also examine whether the HNBUE (HNWUE) property is preserved under the reliability operations (i) formation of coherent structure, (ii) convolution and (iii) mixture. The class of distributions with the discrete HNBUE (discrete HNWUE) property (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=k}^\infty {\mathop{\mathop P\limits^-_{j\,\,\,}\, \le(\ge)\,\mu(1 - 1/\mu)^{^k }}\limits^{}} $\end{document} for k = 0, 1, 2, ?, where μ =\documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=0}^\infty {\mathop {\mathop P\limits^- _{j\,\,\,\,\,}and\mathop P\limits^ - _{j\,\,\,\,\,}=}\limits^{}}\,\,\sum\limits_{k=j+1}^\infty {P_k)}$\end{document} is also studied.  相似文献   

18.
This paper proposes a skewness correction (SC) method for constructing the and R control charts for skewed process distributions. Their asymmetric control limits (about the central line) are based on the degree of skewness estimated from the subgroups, and no parameter assumptions are made on the form of process distribution. These charts are simply adjustments of the conventional Shewhart control charts. Moreover, the chart is almost the same as the Shewhart chart if the process distribution is known to be symmetrical. The new charts are compared with the Shewhart charts and weighted variance (WV) control charts. When the process distribution is in some neighborhood of Weibull, lognormal, Burr or binomial family, simulation shows that the SC control charts have Type I risk (i.e., probability of a false alarm) closer to 0.27% of the normal case. Even in the case where the process distribution is exponential with known mean, not only the control limits and Type I risk, but also the Type II risk of the SC charts are closer to those of the exact and R charts than those of the WV and Shewhart charts. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 555–573, 2003  相似文献   

19.
Let YiNi, σ), i = 1, …, p, be independently distributed, where θi and σ are unknown. A Bayesian approach is used to estimate the first two moments of the minimum order statistic, W = min (Y1, …, Yp). In order to compute the Bayes estimates, one has to evaluate the predictive densities of the Yi's conditional on past data. Although the required predictive densities are complicated in form, an efficient algorithm to calculate them has been developed and given in the article. An application of the Bayesian method in a continuous-review control model with multiple suppliers is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Let , where A (t)/t is nondecreasing in t, {P(k)1/k} is nonincreasing. It is known that H(t) = 1 — H (t) is an increasing failure rate on the average (IFRA) distribution. A proof based on the IFRA closure theorem is given. H(t) is the distribution of life for systems undergoing shocks occurring according to a Poisson process where P (k) is the probability that the system survives k shocks. The proof given herein shows there is an underlying connection between such models and monotone systems of independent components that explains the IFRA life distribution occurring in both models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号