首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study a stochastic scenario‐based facility location problem arising in situations when facilities must first be located, then activated in a particular scenario before they can be used to satisfy scenario demands. Unlike typical facility location problems, fixed charges arise in the initial location of the facilities, and then in the activation of located facilities. The first‐stage variables in our problem are the traditional binary facility‐location variables, whereas the second‐stage variables involve a mix of binary facility‐activation variables and continuous flow variables. Benders decomposition is not applicable for these problems due to the presence of the second‐stage integer activation variables. Instead, we derive cutting planes tailored to the problem under investigation from recourse solution data. These cutting planes are derived by solving a series of specialized shortest path problems based on a modified residual graph from the recourse solution, and are tighter than the general cuts established by Laporte and Louveaux for two‐stage binary programming problems. We demonstrate the computational efficacy of our approach on a variety of randomly generated test problems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

2.
The present analysis deals with very high-dimensional data sets, each one containing close to 900 binary variables. Each data set corresponds to an evaluation of one complex system. These data sets are characterized by large portions of missing data where, moreover, the unobserved variables are not the same in different evaluations. Thus, the problems which confront the statistical analysis are those of multivariate binary data analysis, where the number of variables is much larger than the sample size and in which missing data varies with the sample elements. The variables, however, are hierarchically structured and the problem of clustering variables to groups does not exist in the present study. In order to motivate the statistical problem under consideration, the Marine Corps Combat Readiness Evaluation System (MCCRES) is described for infantry battalions and then used for exposition. The present article provides a statistical model for data from MCCRES and develops estimation and prediction procedures which utilize the dependence structure. The E-M algorithm is applied to obtain maximum-likelihood estimates of the parameters of interest. Numerical examples illustrate the proposed methods.  相似文献   

3.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

4.
The problem considered involves the assignment of n facilities to n specified locations. Each facility has a given nonnegative flow from each of the other facilities. The objective is to minimize the sum of transportation costs. Assume these n locations are given as points on a two-dimensional plane and transportation costs are proportional to weighted rectangular distances. Then the problem is formulated as a binary mixed integer program. The number of integer variables (all binary) involved equals the number of facilities squared. Without increasing the number of integer variables, the formulation is extended to include “site costs” Computational results of the formulation are presented.  相似文献   

5.
The two-echelon uncapacitated facility location problem (TUFLP) is a generalization of the uncapacitated facility location problem (UFLP) and multiactivity facility location problem (MAFLP). In TUFLP there are two echelons of facilities through which products may flow in route to final customers. The objective is to determine the least-cost number and locations of facilities at each echelon in the system, the flow of product between facilities, and the assignment of customers to supplying facilities. We propose a new dual-based solution procedure for TUFLP that can be used as a heuristic or incorporated into branch-and-bound procedures to obtain optimal solutions to TUFLP. The algorithm is an extension of the dual ascent and adjustment procedures developed by Erlenkotter for UFLP. We report computational experience gained by solving over 420 test problems. The largest problems solved have 25 possible facility locations at each echelon and 35 customer zones, implying 650 integer variables and 21,875 continuous variables.  相似文献   

6.
This paper presents a new methodology to solve the cyclic preference scheduling problem for hourly workers. The focus is on nurse rostering but is applicable to any organization in which the midterm scheduling decision must take into account a complex of legal, institutional, and preferential constraints. The objective is to strike a balance between satisfying individual preferences and minimizing personnel costs. The common practice is to consider each planning period independently and to generate new rosters at the beginning of each. To reduce some of the instability in the process, there is a growing trend toward cyclic schedules, which are easier to manage and are generally perceived to be more equitable. To address this problem, a new integer programming model is presented that combines the elements of both cyclic and preference scheduling. To find solutions, a branch‐and‐price algorithm is developed that makes use of several branching rules and an extremely effective rounding heuristic. A unique feature of the formulation is that the master problem contains integer rather than binary variables. Computational results are reported for problem instances with up to 200 nurses. Most were solved within 10 minutes and many within 3 minutes when a double aggregation approach was applicable. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

7.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

8.
The United States military frequently has difficulty retaining enlisted personnel beyond their initial enlistment. A bonus program within each service, called a Selective Reenlistment Bonus (SRB) program, seeks to enhance reenlistments and thus reduce personnel shortages in critical military occupational specialties (MOSs). The amount of bonus is set by assigning “SRB multipliers” to each MOS. We develop a nonlinear integer program to select multipliers which minimize a function of deviations from desired reenlistment targets. A Lagrangian relaxation of a linearized version of the integer program is used to obtain lower bounds and feasible solutions. The best feasible solution, discovered in a coordinate search of the Lagrangian function, is heuristically improved by apportioning unexpended funds. For large problems a heuristic variable reduction is employed to speed model solution. U.S. Army data and requirements for FY87 yield a 0-1 integer program with 12,992 binary variables and 273 constraints, which is solved within 0.00002% of optimality on an IBM 3033AP in less than 1.7 seconds. More general models with up to 463,000 binary variables are solved, on average, to within 0.009% of optimality in less than 1.8 minutes. The U.S. Marine Corps has used a simpler version of this model since 1986. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

10.
Scheduling IT projects and assigning the project work to human resources are an important and common tasks in almost any IT service company. It is particularly complex because human resources usually have multiple skills. Up to now only little work has considered IT‐specific properties of the project structure and human resources. In this article, we present an optimization model that simultaneously schedules the activities of multiple IT projects with serial network structures and assigns the project work to multiskilled internal and external human resources with different efficiencies. The goal is to minimize costs. We introduce a metaheuristic that decomposes the problem into a binary scheduling problem and a continuous staffing problem where the latter is solved efficiently by exploiting its underlying network structure. For comparison, we solve the mixed–binary linear program with a state–of–the–art commercial solver. The impacts of problem parameters on computation time and solution gaps between the metaheuristic and the solver are assessed in an experimental study. Our results show that the metaheuristic provides very favorable results in considerable less time than the solver for midsize problems. For larger problems, it shows a similar performance while the solver fails to return feasible solutions. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 111–127, 2012  相似文献   

11.
A posynomial geometric programming problem formulated so that the number of objective function terms is equal to the number of primal variables will have a zero degree of difficulty when augmented by multiplying each constraint term by a slack variable and including a surrogate constraint composed of the product of the slack variables, each raised to an undetermined negative exponent or surrogate multiplier. It is assumed that the original problem is canonical. The exponents in the constraint on the product of the slack variables must be estimated so that the associated solution to the augmented problem, obtained immediately, also solves the original problem. An iterative search procedure for finding the required exponents, thus solving the original problem, is described. The search procedure has proven quite efficient, often requiring only two or three iterations per degree of difficulty of the original problem. At each iteration the well-known procedure for solving a geometric programming problem with a zero degree of difficulty is used and so computations are simple. The solution generated at each iteration is optimal for a problem which differs from the original problem only in the values of some of the constraint coefficients, so intermediate solutions provide useful information.  相似文献   

12.
In this paper we present some results in parametric studies on several transportation-type problems. Specifically, a characterization is obtained for the optimal values of the variables in the problem of determining an optimal growth path in a logistics system. We also derive an upper bound beyond which the optimal growth path remains the same. The results are then extended to the goal programming model and the prespecified market growth rate problem.  相似文献   

13.
Optimizing the selection of resources to accomplish a set of tasks involves evaluating the tradeoffs between the cost of maintaining the resources necessary to accomplish the tasks and the penalty cost associated with unfinished tasks. We consider the case where resources are categorized into types, and limits (capacity) are imposed on the number of each type that can be selected. The objective is to minimize the sum of penalty costs and resource costs. This problem has several practical applications including production planning, new product design, menu selection and inventory management. We develop a branch‐and‐bound algorithm to find exact solutions to the problem. To generate bounds, we utilize a dual ascent procedure which exploits the special structure of the problem. Information from the dual and recovered primal solutions are used to select branching variables. We generate strong valid inequalities and use them to fix other variables at each branching step. Results of tests performed on reasonably sized problems are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 19–37, 1999  相似文献   

14.
A generalized parallel replacement problem is considered with both fixed and variable replacement costs, capital budgeting, and demand constraints. The demand constraints specify that a number of assets, which may vary over time, are required each period over a finite horizon. A deterministic, integer programming formulation is presented as replacement decisions must be integer. However, the linear programming relaxation is shown to have integer extreme points if the economies of scale binary variables are fixed. This allows for the efficient computation of large parallel replacement problems as only a limited number of 0–1 variables are required. Examples are presented to provide insight into replacement rules, such as the “no‐splitting‐rule” from previous research, under various demand scenarios. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 40–56, 2000  相似文献   

15.
In this article, we describe a new algorithm for solving all-integer, integer programming problems. We generate upper bounds on the decision variables, and use these bounds to create an advanced starting point for a dual all-integer cutting plane algorithm. In addition, we use a constraint derived from the objective function to speed progress toward the optimal solution. Our basic vehicle is the dual all-integer algorithm of Gomory, but we incorporate certain row- and column-selection criteria which partially avoid the problem of dual-degenerate iterations. We present the results of computational testing.  相似文献   

16.
A branch and bound algorithm is developed for a class of allocation problems in which some constraint coefficients depend on the values of certain of the decision variables. Were it not for these dependencies, the problems could be solved by linear programming. The algorithm is developed in terms of a strategic deployment problem in which it is desired to find a least-cost transportation fleet, subject to constraints on men/materiel requirements in the event of certain hypothesized contingencies. Among the transportation vehicles available for selection are aircraft which exhibit the characteristic that the amount of goods deliverable by an aircraft on a particular route in a given time period (called aircraft productivity and measured in kilotons/aircraft/month) depends on the ratio of type 1 to type 2 aircraft used on that particular route. A model is formulated in which these relationships are first approximated by piecewise linear functions. A branch and bound algorithm for solving the resultant nonlinear problem is then presented; the algorithm solves a sequence of linear programming problems. The algorithm is illustrated by a sample problem and comments concerning its practicality are made.  相似文献   

17.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

18.
19.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

20.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号