共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern technology is producing high reliability products. Life testing for such products under normal use condition takes a lot of time to obtain a reasonable number of failures. In this situation a step‐stress procedure is preferred for accelerated life testing. In this paper we assume a Weibull and Lognormal model whose scale parameter depends upon the present level as well as the age at the entry in the present stress level. On the basis of that we propose a parametric model to the life distribution for step‐stress testing and suggest a suitable design to estimate the parameters involved in the model. A simulation study has been done by the proposed model based on maximum likelihood estimation. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003 相似文献
2.
Ronald E. Glaser 《海军后勤学研究》1984,31(4):559-570
It is sometimes reasonable to assume that the lifetime distribution of an item belongs to a certain parametric family, and that actual parameter values depend upon the testing environment of the item. In the two-parameter Weibull family setting, suppose both the shape and scale parameters are expressible as functions of the testing environment. For various models of functional dependency on environment, maximum likelihood methods are used to estimate characteristics of interest at specified environmental levels. The methodology presented handles exact, censored, and grouped data. A detailed accelerated life testing analysis of stress-rupture data for Kevlar/epoxy composites is given. 相似文献
3.
We present a new approach for inference from accelerated life tests. Our approach is based on a dynamic general linear model setup which arises naturally from the accelerated life-testing problem and uses linear Bayesian methods for inference. The advantage of the procedure is that it does not require large numbers of items to be tested and that it can deal with both censored and uncensored data. We illustrate the use of our approach with some actual accelerated life-test data. © 1992 John Wiley & Sons, Inc. 相似文献
4.
恒定应力加速寿命试验的非参数统计方法 总被引:1,自引:0,他引:1
张志华 《海军工程大学学报》2001,13(2):12-16
在恒定应力加速寿命试验 (简称恒加试验 )的统计分析中 ,非参数统计方法具有一定的实际价值 .在一定的假定下 ,文中给出了两种新估计 ,并证明了它们的优良性 相似文献
5.
Accelerated life testing (ALT) is concerned with subjecting items to a series of stresses at several levels higher than those experienced under normal conditions so as to obtain the lifetime distribution of items under normal levels. A parametric approach to this problem requires two assumptions. First, the lifetime of an item is assumed to have the same distribution under all stress levels, that is, a change of stress level does not change the shape of the life distribution but changes only its scale. Second, a functional relationship is assumed between the parameters of the life distribution and the accelerating stresses. A nonparametric approach, on the other hand, assumes a functional relationship between the life distribution functions at the accelerated and nonaccelerated stress levels without making any assumptions on the forms of the distribution functions. In this paper, we treat the problem nonparametrically. In particular, we extend the methods of Shaked, Zimmer, and Ball [7] and Strelec and Viertl [8] and develop a nonparametric estimation procedure for a version of the generalized Arrhenius model with two stress variables assuming a linear acceleration function. We obtain consistent estimates as well as confidence intervals of the parameters of the life distribution under normal stress level and compare our nonparametric method with parametric methods assuming exponential, Weibull and lognormal life distributions using both real life and simulated data. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 629–644, 1998 相似文献
6.
We consider optimal test plans involving life distributions with failure‐free life, i.e., where there is an unknown threshold parameter below which no failure will occur. These distributions do not satisfy the regularity conditions and thus the usual approach of using the Fisher information matrix to obtain an optimal accelerated life testing (ALT) plan cannot be applied. In this paper, we assume that lifetime follows a two‐parameter exponential distribution and the stress‐life relationship is given by the inverse power law model. Near‐optimal test plans for constant‐stress ALT under both failure‐censoring and time‐censoring are obtained. We first obtain unbiased estimates for the parameters and give the approximate variance of these estimates for both failure‐censored and time‐censored data. Using these results, the variance for the approximate unbiased estimate of a percentile at a design stress is computed and then minimized to produce the near‐optimal plan. Finally, a numerical example is presented together with simulation results to study the accuracy of the approximate variance given by the proposed plan and show that it outperforms the equal‐allocation plan. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 169–186, 1999 相似文献
7.
8.
A method of life testing is proposed which combines both ordinary and accelerated life-testing procedures. It is assumed that an item can be tested either in a standard environment or under stress. The amount of stress is fixed in advance and is the same for all items to be tested However, the time x at which an item on lest is taken out of the standard environment and put under stress can be chosen by the experimenter subject to a given cost structure. When an item is put under stress its lifetime is changed by the factor α. Let the random variable T denote the lifetime of an item in the standard environment, and let γ denote its lifetime under the partially accelerated test procedure just described. Then Y = T if T ≦ x, and Y = x + α (T > x) if T > x. It is assumed that T has an exponential distribution with parameter θ. The estimation of θ and α and the optimal design of a partially accelerated life test are studied in the framework of Bayesian decision theory. 相似文献
9.
Burn‐in is a technique to enhance reliability by eliminating weak items from a population of items having heterogeneous lifetimes. System burn‐in can improve system reliability, but the conditions for system burn‐in to be performed after component burn‐in remain a little understood mathematical challenge. To derive such conditions, we first introduce a general model of heterogeneous system lifetimes, in which the component burn‐in information and assembly problems are related to the prediction of system burn‐in. Many existing system burn‐in models become special cases and two important results are identified. First, heterogeneous system lifetimes can be understood naturally as a consequence of heterogeneous component lifetimes and heterogeneous assembly quality. Second, system burn‐in is effective if assembly quality variation in the components and connections which are arranged in series is greater than a threshold, where the threshold depends on the system structure and component failure rates. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 364–380, 2003. 相似文献
10.
Tsuyoshi Katayama 《海军后勤学研究》2001,48(7):638-651
We consider a single‐queue with exhaustive or gated time‐limited services and server vacations, in which the length of each service period at the queue is controlled by a timer, i.e., the server serves customers until the timer expires or the queue becomes empty, whichever occurs first, and then takes vacations. The customer whose service is interrupted due to the timer expiration may be attended according to nonpreemptive or preemptive service disciplines. For the M/G/1 exhaustive/gated time‐limited service queueing system with an exponential timer and four typical preemptive/nonpreemptive service disciplines, we derive the Laplace—Stieltjes transforms and the moment formulas for waiting times and sojourn times through a unified approach, and provide some new results for these time‐limited service disciplines. © John Wiley & Sons, Inc. Naval Research Logistics 48: 638–651, 2001. 相似文献
11.
We consider the component testing problem of a system where the main feature is that the component failure rates are not constant parameters, but they change in a dynamic fashion with respect to time. More precisely, each component has a piecewise-constant failure-rate function such that the lifetime distribution is exponential with a constant rate over local intervals of time within the overall mission time. There are several such intervals, and the rates change dynamically from one interval to another. We note that these lifetime distributions can also be used in a more general setting to approximate arbitrary lifetime distributions. The optimal component testing problem is formulated as a semi-infinite linear program. We present an algorithmic procedure to compute optimal test times based on the column-generation technique and illustrate it with a numerical example. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 187–197, 1997 相似文献
12.
The problem of minimum makespan on an m machine jobshop with unit execution time (UET) jobs (m ≥ 3) is known to be strongly NP‐hard even with no setup times. We focus in this article on the two‐machine case. We assume UET jobs and consider batching with batch availability and machine‐dependent setup times. We introduce an efficient \begin{align*}(O(\sqrt{n}))\end{align*} algorithm, where n is the number of jobs. We then introduce a heuristic for the multimachine case and demonstrate its efficiency for two interesting instances. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011 相似文献
13.
Most of the previous works on designing accelerated life test plans were concerned with the case where a single stress is employed for acceleration. In this article we develop optimal accelerated life test plans when two stresses are involved with possible interaction between them. The lifetimes of test items are assumed to follow an exponential distribution, the mean of which depends on the stresses according to the generalized Eyring law. A factorial arrangement of test points is considered for an efficient utilization of equipment, and the low level of each stress and the proportion of test items allocated to each test point are determined such that the asymptotic variance of the maximum-likelihood estimator of the mean lifetime at the use condition or of an acceleration factor is minimized. Patterns of optimal plans are identified and their efficiencies are compared with the corresponding single-stress accelerated life test plans. © 1996 John Wiley & Sons, Inc. 相似文献
14.
A general age replacement is introduced which incorporates minimal repair, planned and unplanned replacements, and costs which depend on time. Finite and infinite horizon results are obtained. Various special cases are considered. Furthermore, a shock model with general cost structure is considered. 相似文献
15.
16.
Acceptance sampling plans are used to assess the quality of an ongoing production process, in addition to the lot acceptance. In this paper, we consider sampling inspection plans for monitoring the Markov‐dependent production process. We construct sequential plans that satisfy the usual probability requirements at acceptable quality level and rejectable quality level and, in addition, possess the minimum average sample number under semicurtailed inspection. As these plans result in large sample sizes, especially when the serial correlation is high, we suggest new plans called “systematic sampling plans.” The minimum average sample number systematic plans that satisfy the probability requirements are constructed. Our algorithm uses some simple recurrence relations to compute the required acceptance probabilities. The optimal systematic plans require much smaller sample sizes and acceptance numbers, compared to the sequential plans. However, they need larger production runs to make a decision. Tables for choosing appropriate sequential and systematic plans are provided. The problem of selecting the best systematic sampling plan is also addressed. The operating characteristic curves of some of the sequential and the systematic plans are compared, and are observed to be almost identical. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 451–467, 2001 相似文献
17.
We discuss a time dependent optimal ordering policy for a finite horizon inventory system for which the provision of service is essential and thus no stockout is allowed. It is assumed that the system can place an order at any point in time during the horizon when it cannot meet the customer's demand and that lead time is negligible. The demand is considered to be distributed as a compound Poisson process with known parameters and the functional equation approach of dynamic programming is used to formulate the objective function. An algorithm has been developed to obtain the solution for all the cases. In addition, analytical solutions of the basic equation under two limiting conditions are presented. 相似文献
18.
Yoshinori Suzuki 《海军后勤学研究》2008,55(8):737-746
Fuel optimizers are decision models (software products) that are increasingly recognized as effective fuel management tools by U.S. truckload carriers. Using the latest price data of every truck stop, these models calculate the optimal fueling schedule for each route that indicates: (i) which truck stop(s) to use, and (ii) how much fuel to buy at the chosen truck stop(s) to minimize the refueling cost. In the current form, however, these models minimize only the fuel cost, and ignore or underestimate other costs that are affected by the models' decision variables. On the basis of the interviews with carrier managers, truck drivers, and fuel‐optimizer vendors, this article proposes a comprehensive model of motor‐carrier fuel optimization that considers all of the costs that are affected by the model's decision variables. Simulation results imply that the proposed model not only attains lower vehicle operating costs than the commercial fuel optimizers, but also gives solutions that are more desirable from the drivers' viewpoint. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008 相似文献
19.
Emad-Eldin A. A. Aly 《海军后勤学研究》1993,40(5):633-642
We consider the problem of testing for the decreasing mean residual life ordering introduced in Kochar and Wiens [14]. We treat both the one-sample and two-sample problems. The limiting distributions of the proposed test statistics are derived. © 1993 John Wiley & Sons, Inc. 相似文献
20.
Accelerated life testing (ALT) is commonly used to obtain reliability information about a product in a timely manner. Several stress loading designs have been proposed and recent research interests have emerged concerning the development of equivalent ALT plans. Step‐stress ALT (SSALT) is one of the most commonly used stress loadings because it usually shortens the test duration and reduces the number of required test units. This article considers two fundamental questions when designing a SSALT and provides formal proofs in answer to each. Namely: (1) can a simple SSALT be designed so that it is equivalent to other stress loading designs? (2) when optimizing a multilevel SSALT, does it degenerate to a simple SSALT plan? The answers to both queries, under certain reasonable model assumptions, are shown to be a qualified YES. In addition, we provide an argument to support the rationale of a common practice in designing a SSALT, that is, setting the higher stress level as high as possible in a SSALT plan. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013 相似文献