首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
In this article we consider the optimal control of an M[X]/M/s queue, s ≧ 1. In addition to Poisson bulk arrivals we incorporate a reneging function. Subject to control are an admission price p and the service rate μ. Thus, through p, balking response is induced. When i customers are present a cost h(i,μ,p) per unit time is incurred, discounted continuously. Formulated as a continuous time Markov decision process, conditions are given under which the optimal admission price and optimal service rate are each nondecreasing functions of i. In Section 4 we indicate how the infinite state space may be truncated to a finite state space for computational purposes.  相似文献   

2.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

3.
A model is developed taking into consideration all the costs (namely cost of sampling, cost of not detecting a change in the process, cost of a false indication of change, and the cost of readjusting detected changes) incurred when a production process, using an unscheduled setup policy, utilizes fraction-defective control charts to control current production. The model is based on the concept of the expected time between detection of changes calling for setups. It is shown that the combination of unscheduled setups and control charts can be utilized in an optimal way if those combinations of sample size, sampling interval, and extent of control limits from process average are used that provide the minimum expected total cost per unit of time. The costs of a production process that uses unscheduled setups in conjunction with the appropriate optimal control charts are compared to the costs of a production process that uses scheduled setups at optimum intervals in conjunction with its appropriate control charts. This comparison indicates the criteria for selecting production processes with scheduled setups using optimal setup intervals over unscheduled setups. Suggestions are made to evaluate the optimal process setup strategy and the accompanying optimal decision parameters, for any specific cost data, by use of computer enumeration. A numerical example for assumed cost and process data is provided.  相似文献   

4.
In this article the control of entry of customers to a queuing system with s servers is considered. It is assumed that the arrivals form a nonstationary Poisson process with a periodic rate. The service times are assumed to be exponentially distributed with a parameter independent of time. The cost structure considered is the same as that of Naor. It is demonstrated numerically that, like the stationary cases, the average expected benefit of customers per unit of time is a unimodal function of the critical point. And, also, the social critical point is smaller than the individual critical point. These suggest the use of a search technique for finding the social critical point. The results show successful application of the discrete version of the Fibonacci search.  相似文献   

5.
We consider the single server Markovian queue subject to Poisson generated catastrophes. Whenever a catastrophe occurs, all customers are forced to abandon the system, the server is rendered inoperative and an exponential repair time is set on. During the repair time new arrivals are allowed to join the system. We assume that the arriving customers decide whether to join the system or balk, based on a natural linear reward‐cost structure with two types of rewards: A (usual) service reward for those customers that receive service and a (compensation) failure reward for those customers that are forced to abandon the system due to a catastrophe. We study the strategic behavior of the customers regarding balking and derive the corresponding (Nash) equilibrium strategies for the observable and unobservable cases. We show that both types of strategic behavior may be optimal: to avoid the crowd or to follow it. The crucial factor that determines the type of customer behavior is the relative value of the service reward to the failure compensation. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

6.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   

7.
The strategic trade-offs between acquiring new capacity and subcontracting (or leasing) capacity are explored for service environments characterized by rapid technological improvement or highly seasonal demand. Reflecting the focus on service-sector organizations, it is assumed that demand cannot be met from inventory. Furthermore, the critical impact that subcontracting has on a firm's competitive pricing policy is examined. The analysis presented is of particular relevance for firms in price-competitive industries such as telecommunications, information services, or health care, because subcontracting capacity represents an alternative to acquiring costly new capacity which may soon become obsolete or unnecessary. It is shown that the optimal price charged is based on the higher of the two operating costs incurred (internal unit cost or unit cost of subcontracting). It is also shown that as a consequence of subcontracting to maximize profit, the optimal price charged is never reduced and may increase. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
In this article we consider a single-server system whose customers arrive by appointments only. Both static and dynamic scheduling problems are studied. In static scheduling problems, one considers scheduling a finite number of customer arrivals, assuming there is no scheduled customer arrival to the system. In dynamic scheduling problems, one considers scheduling one customer arrival only, assuming that there are a number of scheduled customers already. The expected delay time is recursively computed in terms of customer interarrival times for both cases. The objective is to minimize the weighted customer delay time and the server completion time. The problem is formulated as a set of nonlinear equations. Various numerical examples are illustrated. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
In many routing-location models customers located at nodes of a network generate calls for service with known probabilities. The customers that request service in a particular day are served by a single server that performs a service tour visiting these customers. The order of providing service to customers for each potential list of calls is uniquely defined by some a priori fixed basic sequence of all the customers (a priori tour). The problems addressed in this article are to find an optimal home location or an optimal basic sequence for the server so as to minimize the expectation of a criterion. The following criteria are considered: the total waiting time of all the customers, the total length of the tour, the maximal waiting time of a customer, the average traveled length per customer, and the average waiting time per customer. We present polynomial-time algorithms for the location problems. For the routing problems we present lower bounds that can be calculated efficiently (in polynomial time) and used in a branch-and-bound scheme. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
This article deals with the M/G/1 queue with server vacations in which the return of the server to service depends on the number of customers present in the system. The main goal is optimization, which is done under the average cost criterion in the multiple- and single-vacation models as well as for the “total cost for one busy cycle” criterion in the multiple-vacation case. Expressions that characterize the optimal number of customers, below which the server should not start a new service period, are exhibited for the various cases. It is found that under the average cost criterion, the expression may be universal in the sense that it may hold for a general class of problems including such that arise in production planning and inventory theory (for the particular cost structure discussed).  相似文献   

11.
This paper explores a modification of the output discipline for the Poisson input, exponential output, single channel, first-come, first-served queueing system. Instead, the service time distribution of customers beginning service when alone in the system is considered different from that governing service times of all other customers. More specifically, the service times of lone customers are governed by a one parameter gamma distribution, while the service times of all other customers are exponentially ajstributed. The generating function for the steady-state probsbilities, nj = Pr { j customers in system at an arbitrary point of departure}, of the imbedded chain, {Xn/Xn = number in system after nth customer is serviced}, is obtained, and the steady-state probabilities, themselves, are found in closed form.  相似文献   

12.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

13.
Consider a patrol problem, where a patroller traverses a graph through edges to detect potential attacks at nodes. An attack takes a random amount of time to complete. The patroller takes one time unit to move to and inspect an adjacent node, and will detect an ongoing attack with some probability. If an attack completes before it is detected, a cost is incurred. The attack time distribution, the cost due to a successful attack, and the detection probability all depend on the attack node. The patroller seeks a patrol policy that minimizes the expected cost incurred when, and if, an attack eventually happens. We consider two cases. A random attacker chooses where to attack according to predetermined probabilities, while a strategic attacker chooses where to attack to incur the maximal expected cost. In each case, computing the optimal solution, although possible, quickly becomes intractable for problems of practical sizes. Our main contribution is to develop efficient index policies—based on Lagrangian relaxation methodology, and also on approximate dynamic programming—which typically achieve within 1% of optimality with computation time orders of magnitude less than what is required to compute the optimal policy for problems of practical sizes. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 557–576, 2014  相似文献   

14.
A model of an M/M/1, bulk queue with service rates dependent on the batch size is developed. The operational policy is to commence service when at least L customers are available with a maximum batch size of K. Arriving customers are not allowed to join in-process service. The solution procedure utilizes the matrix geometric methodology and reduces to obtaining the inverse of a square matrix of dimension K + 1 - L. For the case where the service rates are not batch size dependent, the limiting probabilities can be written in closed form. A numerical example illustrates the variability of the system cost as a function of the minimum batch service size L.  相似文献   

15.
We consider the single‐server constant retrial queue with a Poisson arrival process and exponential service and retrial times. This system has not waiting space, so the customers that find the server busy are forced to abandon the system, but they can leave their contact details. Hence, after a service completion, the server seeks for a customer among those that have unsuccessfully applied for service but left their contact details, at a constant retrial rate. We assume that the arriving customers that find the server busy decide whether to leave their contact details or to balk based on a natural reward‐cost structure, which incorporates their desire for service as well as their unwillingness to wait. We examine the customers' behavior, and we identify the Nash equilibrium joining strategies. We also study the corresponding social and profit maximization problems. We consider separately the observable case where the customers get informed about the number of customers waiting for service and the unobservable case where they do not receive this information. Several extensions of the model are also discussed. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
In this article we consider a version of the vehicle-routing problem (VRP): A fleet of identical capacitated vehicles serves a system of one warehouse and N customers of two types dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to the warehouse, or both. The objective is to design a set of routes of minimum total length to serve all customers, without violating the capacity restriction of the vehicles along the routes. The capacity restriction here, in contrast to the VRP without back hauls is complicated because amount of capacity used depends on the order the customers are visited along the routes. The problem is NP-hard. We develop a lower bound on the optimal total cost and a heuristic solution for the problem. The routes generated by the heuristic are such that the back-haul customers are served only after terminating service to the delivery customers. However, the heuristic is shown to converge to the optimal solution, under mild probabilistic conditions, as fast as N−0.5. The complexity of the heuristic, as well as the computation of the lower bound, is O(N3) if all customers have unit demand size and O(N3 log N) otherwise, independently of the demand sizes. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
A machine or production system is subject to random failure. Upon failure the system is replaced by a new one, and the process repeats. A cost is associated with each replacement, and an additional cost is incurred at each failure in service. Thus, there is an incentive for a controller to attempt to replace before failure occurs. The problem is to find an optimal control strategy that balances the cost of replacement with the cost of failure and results in a minimum total long-run average cost per unit time. We attack this problem under the cumulative damage model for system failure. In this failure model, shocks occur to the system in accordance with a Poisson process. Each shock causes a random amount of damage or wear and these damages accumulate additively. At any given shock, the system fails with a known probability that depends on the total damage accumulated to date. We assume that the cumulative damage is observable by the controller and that his decisions may be based on its current value. Supposing that the shock failure probability is an increasing function of the cumulative damage, we show that an optimal policy is to replace either upon failure or when this damage first exceeds a critical control level, and we give an equation which implicitly defines the optimal control level in terms of the cost and other system parameters. Also treated are some more general models that allow for income lost during repair time and other extensions.  相似文献   

18.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

19.
We consider a queuing system in which both customers and servers may be of several types. The distribution of a customer's service time is assumed to depend on both the customer's type and the type of server to which he is assigned. For a model with two servers and two customer types, conditions are presented which ensure that the discounted number of service completions is maximized by assigning customers with longer service times to faster servers. Generalizations to more complex models are discussed.  相似文献   

20.
Retrial queueing systems are widely used in teletraffic theory and computer and communication networks. Although there has been a rapid growth in the literature on retrial queueing systems, the research on retrial queues with nonexponential retrial times is very limited. This paper is concerned with the analytical treatment of an M/G/1 retrial queue with general retrial times. Our queueing model is different from most single server retrial queueing models in several respectives. First, customers who find the server busy are queued in the orbit in accordance with an FCFS (first‐come‐first‐served) discipline and only the customer at the head of the queue is allowed for access to the server. Besides, a retrial time begins (if applicable) only when the server completes a service rather upon a service attempt failure. We carry out an extensive analysis of the queue, including a necessary and sufficient condition for the system to be stable, the steady state distribution of the server state and the orbit length, the waiting time distribution, the busy period, and other related quantities. Finally, we study the joint distribution of the server state and the orbit length in non‐stationary regime. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 561–581, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号