首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When a penetrator with enhanced lateral effect (PELE) impacts on a reinforced concrete (RC) target, the target is damaged with a large opening. An understanding of how PELE projectile parameters affect the opening dimension, is essential for effective design of the PELE projectile. In this study, under the condition that the impact velocity and target parameters (strength and thickness) were fixed values, the important influence factors of the PELE (jacket wall thickness B, jacket material strength Y1, filling material strength Y2 and angle of monolithic jacketθ) were determined by a dimensional analysis. Tests and simulations of the PELE penetrating the RC target were conducted to analyze the influence of these factors on opening diameter ((D), an equivalent diameter under relative kinetic energy). Based on the test and simulation results, it is found that the influence of these factors B, Y1 andθon the deformation mode of the jacket shows a similar trend:as values of the three factors decrease, the jacket deforms from small bending deformation to large one, and then to curling deformation. This causes the opening diameter to first increase with the decrease of these three factors, and then decreases. It is well known that the bending resistance of the jacket is related to these factors B, Y1 andθ. Therefore, a plastic limit bending moment (M0) of the jacket was quoted to characterize the influence of these factors on the bending deformation of the jacket and the opening diameter of the target. The influence factor Y2 causes (D) to first increase with the increase of Y2, and then decreases. A formula was developed to predict the opening diameter, whose influence parameters were considered in a dimensionless way. It has been shown that the dimensionless opening diameter (D)/d1 is dependent on two dimensionless parameters Q = (d31fc/M0) and G = (fc/Y2), where d1 and fc are the outer diameter of the projectile and the compressive strength of the target, respectively.  相似文献   

2.
3.
运用冲击波理论,对横向效应增强型弹丸(Penetration with Enhanced Lateral Efficiency,PELE)侵穿金属靶板的机理进行了分析,将PELE侵彻过程中能量损失分为外壳撞击靶板区域环形塞块获得的能量,内芯撞击靶板区域塞块获得的能量,冲击波影响范围内外壳和内芯增加的内能,外壳前端外沿和内沿对靶板冲塞剪切耗能等几部分,给出了确定这些能量的计算方法;并依据能量守恒原理,给出了PELE正撞金属薄靶板靶后剩余速度的近似计算公式。公式计算结果与多种条件下实验结果均吻合较好。分析计算所得各能量损失结果表明,弹体内芯材料的变化对弹体侵彻能力的影响较小;侵彻中靶板塞块获得的能量在弹体侵彻动能损失中比重最大;外壳前端内沿对靶板的剪切能耗对弹体动能损失的影响可以忽略。  相似文献   

4.
多层横向运动板对垂直来侵长细杆的挤压、剪切能够使长细杆发生挤压和剪切变形,进而降低长细杆后续的侵彻能力,增强装甲的防护效果。利用LS—DYNA软件对多层横向、邻层反向运动的钢装甲板防护钨合金长细杆进行运动板速度和运动板的厚度分配的相关仿真计算。通过对计算结果中开坑形状、后效板侵深和装甲效能进行分析发现,随着板运动速度的增加,后效板开坑深度减小和开坑形状的非对称性加剧,运动板的干扰作用增强及防护效能提高;在运动板总厚度相同的情况下,板的层数越少,防护性能越好。  相似文献   

5.
Due to its high strength, high density, high hardness and good penetration capabilities, Depleted ura-nium alloys have already shined in armor-piercing projectiles. There should also be a lot of room for improvement in the application of fragment killing elements. Therefore, regarding the performance of the depleted uranium alloy to penetrate the target plate, further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy. To study the difference in penetration per-formance between depleted uranium alloy and tungsten alloy fragments,firstly, a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model. Then, taking the cylindrical fragment penetration target as the research object, the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy frag-ment and tungsten alloy fragment were compared and analyzed, by using finite element software ANSYS/LS-DYNA and Lagrange algorithm. Lastly, the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research. The results show that in the penetration process of the DU and tungsten alloy fragments, the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance. Under the same conditions, the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture, and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.  相似文献   

6.
Impact velocity (v0), target strength (fc) and target thickness (hc) are important factors affecting opening damage ((D)) of PELE penetration into RC target. In this paper, based on the three influence factors of v0, fc and hc, experimental and numerical simulation studies on PELE penetration into RC target were carried out. The study results show that: (1) Since interaction force (or penetration resistance) between pro-jectile and target is positively correlated with v0 and fc, with the increase of v0 and fc, deformation mode of jacket is changed from small bending deformation to large bending deformation and then to curling deformation. Therefore, the variation of jacket deformation mode causes opening diameter of RC target to increase first and then to decrease. It is found that the two factors approximately satisfy a quadratic function relationship, respectively. (2) For PELE projectile penetrating RC targets with thickness of 80—400 mm, the opening diameter of six sets of RC targets grows from 240 to 500 mm, and hc with (D) approximately satisfy a linear relationship. (3) Based on the above study results, the relationship be-tween two dimensionless parameters (I= (mv20/d31fc) and H= hc/l ) and dimensionless opening diameter ((D)/d1) was determined. Combined with the results of previous research, a dimensionless opening diameter model (D)/d1=f1(Q,G,I)f2(H) was established. By tests verified, the test results are all within ±10%error of the theoretical model, which verifies the accuracy of the model.  相似文献   

7.
利用Ls—DYNA软件对钨合金长杆弹垂直侵彻单层和双层横向运动钢板进行了数值计算。通过分析长杆弹的塑性变形、速度降、动能降和横向速度,得到了单层和双层板横向运动速度与影响长杆弹侵彻能力因素的关系。仿真结果表明:随着运动板速度的增加,运动板对长杆弹的侵蚀加剧,长杆弹的速度降、动能降增大;运动板相同速度下,虽然单层板的冲击能使长杆弹获得较大横向速度,但双层板比单层板对长杆弹的干扰效果更明显。  相似文献   

8.
This study investigates the ricochet behaviour of three different small-arms projectile types using a novel ricochet measuring device.The results can be used to estimate the danger potential of ricochets on shooting ranges.A ricochet is the change of direction and velocity of a projectile after impacting an oblique surface.This impact produces strong vibrations on a rigid plate.During this impact,flexural waves travel radially outwards from the point of impact.These waves are used to determine the properties of the impactor with accelerometers situated on the target surface.With the use of two measurement plates,one can produce a ricochet and detect the velocity at the same time.Accelerometers are suitable for accurate momentum measurements of single impacts.However,depending upon strike velocity and the impact angle,a ricochet can separate in multiple fragments after being deflected.From the operational safety perspective,these fragments need to be detected,as well.The approach of a coupled sensor concept was chosen to solve this problem.Thermographic sensors were additionally used to visualise the heat which is produced after pene-trating a rubber layer pasted in front of the steel target plate.With this approach one was able to detect the position of impact.The investigations showed that the measurement system performance is better with a multiple sensor design,which includes accelerometers for the velocity,impact strength and partly the position measurement,while the thermographic sensor was used for the position measurement and partly the momentum measurement.The investigated ammunition showed plausible fragmentation behaviour,and the results can already be used to estimate the danger potential of different ammunition types.Frangible projectiles fragment to small particles already after being deflected under a small angle.However,Full Metal Jacket projectiles with or without a steel core do not fragment under angles which are less than 5°.The objective of the paper is to demonstrate the possibility of measuring the complex ricochet me-chanics of small projectiles using standard accelerometers with the adequate signal processing approach.This measuring system is supported by an off the shelf thermographic camera.  相似文献   

9.
采用数值模拟技术研究了由3种不同截面形状的钨芯外包覆一层钢,形成的钢包覆层复合长杆弹在入射速度为1200m/s~1700m/s时对陶瓷/金属复合靶板的侵彻过程。结果表明:对于同一入射速度、相同弹体长度、同种材料的弹芯和包覆层以及靶板材料而言,等面积的六边形截面钨芯复合长杆弹的侵彻深度明显大于圆形及方形截面,方形及六边形截面与和它们等外接圆形成的圆形截面复合长杆弹侵彻深度没有明显差别,本研究认为这是与不同截面钨芯的外接圆直径直接相关。六边形截面长杆弹侵彻过程中的自锐化现象是其侵彻深度明显大于其它两种弹体的主要原因。  相似文献   

10.
Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance. One special ballistic performance is the embedding effect, which can achieve a delayed high-explosive reaction on the target surface. This embedding effect includes a rebound phase that is significantly different from the traditional penetration process. To better study embedment behavior, this study proposed a novel nose shape called an annular grooved projectile and defined its interaction process with the ductile metal plate as partial penetration. Specifically, we conducted a series of low-velocity-ballistic tests in which these steel projectiles were used to strike 16-mm-thick target plates made with 2024-O aluminum alloy. We observed the dynamic evolution characteristics of this aluminum alloy near the impact craters and analyzed these characteristics by corresponding cross-sectional views and numerical simulations. The results indicated that the penetration resistance had a brief decrease that was influenced by its groove structure, but then it increased significantly-that is, the fluctuation of penetration resistance was affected by the irregular nose shape. Moreover, we visualized the distribution of the material in the groove and its inflow process through the rheology lines in microscopic tests and the highlighted mesh lines in simulations. The combination of these phenomena revealed the embed-ment mechanism of the annular grooved projectile and optimized the design of the groove shape to achieve a more firm embedment performance. The embedment was achieved primarily by the target material filled in the groove structure. Therefore, preventing the shear failure that occurred on the filling material was key to achieving this embedding effect.  相似文献   

11.
《防务技术》2020,16(1):50-68
The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity, i.e., the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration. Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile, which is studied numerically and theoretically at present. Firstly, by modeling the projectiles and ceramic targets with the SPH (Smoothed Particle Hydrodynamics) particles and Lagrange finite elements, the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN. Three different responses, i.e., complete interface defeat, dwell and direct penetration, are reproduced in different types of ceramic targets (bare, buffered, radially confined and oblique). Furthermore, by adopting the validated numerical algorithms, constitutive models and the corresponding material parameters, the influences of projectile (material, diameter, nose shape), constitutive models of ceramic (JH-1 and JH-2 models), buffer and cover plate (thickness, constraints, material), as well as the prestress acted on the target (radial and hydrostatic) on the interface defeat (transition velocity and dwell time) are systematically investigated. Finally, based on the energy conservation approach and taking the strain rate effect of ceramic material into account, a modified model for predicting the upper limit of transition velocity is proposed and validated. The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.  相似文献   

12.
加筋板架抗动能穿甲的等效防护厚度研究   总被引:1,自引:0,他引:1  
为研究舰船舷侧结构抗穿甲性能,采用有限元分析了两种典型工况下板架的穿甲破坏模式、弹体的剩余速度和板架的变形吸能规律,提出了基于剪切冲塞模式的剩余速度理论计算模型,比较了不同等效计算方法得到的结果,并将理论计算结果分别与相关文献的实验结果和本文的有限元计算结果进行了比较,两者之间均吻合较好。结果表明,加强筋对板架的抗穿甲性能影响较大,而板架的实际等效厚度是决定其抗穿甲性能的主要因素;不同的等效计算方法与模型相对尺寸、弹体冲击速度以及命中位置有关,对于弹体直径相对较大且初始冲击速度较高时,不同的等效计算方法得到的结果基本一致。  相似文献   

13.
为研究不同密度弹丸对武器装备的损伤,建立弹丸侵彻多层靶板的有限元模型,对不同密度弹丸侵彻多层靶板进行仿真试验。不同于传统的宏观破口尺寸损伤表征参数,引入等效应变及等效应力幅值来精确描述靶板损伤,并提出了一种基于多元统计分析对靶板损伤进行评估的方法。计算结果表明:利用该方法所得到的评估结果与理论分析结果完全一致。这说明基于多元统计分析的靶板损伤评估方法是切实可行的,可以进一步应用于装备损伤评估与易损性研究中。  相似文献   

14.
对钨合金长杆弹垂直侵彻横向运动钢板的偏转角变化规律进行了理论及仿真研究。采用刚体力学理论推导了刚体长杆弹侵彻横向运动钢板的偏转角公式。利用ANSYS/LS-DYNA有限元软件对RIGID及STEINBERG两种材料模型长杆弹垂直侵彻横向运动JOHNSON-COOK模型钢板进行了仿真,根据长杆弹头部和尾部横向相对运动规律,得到了长杆弹的偏转规律。仿真结果表明:板的横向运动速度越大,长杆弹偏转角越大,且偏转角在整个侵彻过程中一直保持增大的趋势。  相似文献   

15.
设计并进行了7.62mm穿甲子弹侵彻陶瓷/低碳钢复合靶板的弹道试验,得到了极限速度及陶瓷锥底部半径等数据。分析了锥底半径与入射速度、面板及背板厚度的关系,着重分析了偏心入射时靶板的抗弹机理。结果表明:陶瓷锥可分为破碎区和粉碎区,粉碎区半径约为面板厚度与弹丸半径之和;当弹着点距离陶瓷面板边缘大于5mm时,靶板的抗弹性能变化不大,而弹着点位于距陶瓷面板边缘小于5mm的板边区时,抗弹性能明显降低,靶板的有效防护面积应扣除板边区。  相似文献   

16.
为了得到横向效应增强型弹(Penetration with Enhanced Lateral Efficiency projectile, PELE)对金属薄靶垂直侵彻后的弹体轴向剩余速度,运用平面冲击波理论,对PELE的侵彻机理进行分析。参照平头弹体对靶板的侵彻模型,将PELE侵彻过程中的能量损失划分为以下几个部分:外壳体和内芯撞靶区域对应的环形塞块获得的能量、冲击波作用下弹体的内能增量以及剪切耗能等。然后根据能量守恒原理,得到PELE垂直侵彻金属薄靶后的PELE弹体轴向剩余速度的理论模型。为了验证该模型的合理性和准确性,设计相应的试验进行验证。结果表明,不同条件下得到的试验结果和理论模型得到的计算结果均吻合得较好。因此,得到的PELE垂直侵彻薄靶的轴向剩余速度理论模型可为工程应用提供指导和参考。  相似文献   

17.
《防务技术》2019,15(5):768-778
Annular grooved projectiles (AGPs) have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates. They could become embedded solidly in the target surface during low-velocity impact. In this investigation, the firm embedding behavior of AGP was observed by impact experiments. Corresponding numerical simulations provided a better understanding of this process. Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target, unlike traditional shape such as conical projectile. According to observation, firm embedding process can generally be subdivided into four stages: initial-cratering stage, groove-filling stage, filling-material failure stage and rebound vibration stage. Moreover, the damage mechanics of target material around crater was obtained through microscopic tests. A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible, which further demonstrated that the firm embedding behavior has application potential in new concept warheads.  相似文献   

18.
长杆射弹对钢纤维混凝土靶开坑特性的实验研究   总被引:2,自引:2,他引:2       下载免费PDF全文
为考察射弹对钢纤维混凝土靶的侵彻特性,采用57mm轻气炮,进行了小尺寸模拟射弹对钢纤维混凝土靶(钢纤维的体积分数为2%)的侵彻实验。实验中观察了钢纤维混凝土靶的开坑形状,测量了射弹的击靶速度,并且采用注沙法测出靶体的开坑体积,计算出射弹对靶体的侵彻体积,得到了长杆射弹的动能与侵彻体积的关系。引入射弹单位面积的冲击动能和靶体单位侵彻体积的冲击动能,结合钢纤维混凝土靶的实验数据,考察了两者之间的关系。  相似文献   

19.
This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles (such as 12.7 mm bullets). A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles. The study critically analyzes data obtained from characteristic parameter measurements and precision trials. It also combines Sobol's algorithm with an artificial intelligence algorithm—Adaptive Neuro-Fuzzy Inference Systems (ANFIS)—in order to conduct global sensitivity analysis and determine which parameters were most influential. The results indicate that the impact points of projectiles with an entry angle of 0° deflected to the left to that of projectiles with an entry angle of 90°. The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m. Variance analysis indicated that the entry angle — i.e. the initial position of mass eccentricity — had a notable influence. After global sensitivity analysis, the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia (Izz Iyy), the mass of a projectile (m), the distance between nose and center of mass along the symmetry axis for a projectile (Lm), and the eccentric distance of the centroid (Lr). The results imply that the control scheme by means of modifying mass center (moving mass or mass eccentricity) is promising for designing small-caliber spin-stabilized projectiles.  相似文献   

20.
《防务技术》2020,16(1):77-87
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation. Hybrid structures with rectangular cores in transverse orthogonal arrangement and slide-fitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4 (Ti6Al4V), AISI 4340 steel and 7075 aluminum alloy panels, respectively. The results showed that the hybrid structure of Ti6Al4V exhibited the highest penetration resistance, followed by that of 7075 aluminum alloy with the same area density. The penetration resistance of the hybrid structure of AISI 4340 steel was the lowest. The underlying mechanisms showed that the metallic material of a ceramic-metal hybrid structure can directly affect its energy absorption from the impact projectile, which further affects its penetration resistance. Different metallic frames exhibited different failure characteristics, resulting in different constraint conditions or support conditions for ceramic prisms. The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure, and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure. The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure. In addition, because the ceramic-metal hybrid structures in the present work were heterogeneous, impact position has slight influence on their penetration resistances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号