首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider sequencing n jobs on a single machine subject to job completion times arising from either machine breakdowns or other causes. The objective is to minimize an expected weighted combination of due dates, completion times, earliness, and tardiness penalties. The determination of optimal distinct due dates or optimal common due dates for a given schedule is investigated. The scheduling problem for a fixed common due date is considered when random completion times arise from machine breakdowns. The optimality of a V-shaped about (a point) T sequence is established when the number of machine breakdowns follows either a Poisson or a geometric distribution and the duration of a breakdown has an exponential distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We consider a manufacturer, served by a single supplier, who has to quote due dates to arriving customers in a make‐to‐order production environment. The manufacturer is penalized for long lead times and for missing due dates. To meet due dates, the manufacturer has to obtain components from a supplier. We model this manufacturer and supplier as a two‐machine flow shop, consider several variations of this problem, and design effective due‐date quotation and scheduling algorithms for centralized and decentralized versions of the model. We perform extensive computational testing to assess the effectiveness of our algorithms and to compare the centralized and decentralized models to quantify the value of centralized control in a make‐to‐order supply chain. Since complete information exchange and centralized control is not always practical or cost‐effective, we explore the value of partial information exchange for this system. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
We consider a dynamic lot‐sizing model with production time windows where each of n demands has earliest and latest production due dates and it must be satisfied during the given time window. For the case of nonspeculative cost structure, an O(nlogn) time procedure is developed and it is shown to run in O(n) when demands come in the order of latest production due dates. When the cost structure is somewhat general fixed plus linear that allows speculative motive, an optimal procedure with O(T4) is proposed where T is the length of a planning horizon. Finally, for the most general concave production cost structure, an optimal procedure with O(T5) is designed. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
This paper finds the optimal integrated production schedule and preventive maintenance plan for a single machine exposed under a cumulative damage process, and investigates how the optimal preventive maintenance plan interacts with the optimal production schedule. The goal is to minimize the total tardiness. The optimal policy possesses the following properties: Under arbitrary maintenance plan when jobs have common processing time, and different due dates, the optimal production schedule is to order the jobs by earliest due date first rule; and when jobs have common due date and different processing times, the optimal production schedule is shortest processing time first. The optimal maintenance plan is of control limit type under any arbitrary production schedule when machine is exposed under a cumulative damage failure process. Numerical studies on the optimal maintenance control limit of the maintenance plan indicate that as the number of jobs to be scheduled increases, the effect of jobs due dates on the optimal maintenance control limit diminishes. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

5.
In this paper, we consider just‐in‐time job shop environments (job shop problems with an objective of minimizing the sum of tardiness and inventory costs), subject to uncertainty due to machine failures. We present techniques for proactive uncertainty management that exploit prior knowledge of uncertainty to build competitive release dates, whose execution improves performance. These techniques determine the release dates of different jobs based on measures of shop load, statistical data of machine failures, and repairs with a tradeoff between inventory and tardiness costs. Empirical results show that our methodology is very promising in comparison with simulated annealing and the best of 39 combinations of dispatch rules & release policies, under different frequencies of breakdowns. We observe that the performance of the proactive technique compared to the other two approaches improves in schedule quality (maximizing delivery performance while minimizing costs) with increase in frequency of breakdowns. The proactive technique presented here is also computationally less expensive than the other two approaches. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

6.
In this paper a stochastically constrained replacement model is formulated. This model determines a sequence of replacement dates such that the total “current account” cost of all future costs and capital expenditures over an infinite time horizon for the n initial incumbent machines is minimized subject to the constraints that an expected number of machines are in a chosen utility class at any point in time. We then indicate one possible solution method for the model.  相似文献   

7.
A problem we call recurrent construction involves manufacturing large, complex, expensive products such as airplanes, houses, and ships. Customers order configurations of these products well in advance of due dates for delivery. Early delivery may not be permitted. How should the manufacturer determine when to purchase and release materials before fabrication, assembly, and delivery? Major material expenses, significant penalties for deliveries beyond due dates, and long product makespans in recurrent construction motivate choosing a release timetable that maximizes the net present value of cash flows. Our heuristic first projects an initial schedule that dispatches worker teams to tasks for the backlogged products, and then solves a series of maximal closure problems to find material release times that maximize NPV. This method compares favorably with other well‐known work release heuristics in solution quality for large problems over a wide range of operating conditions, including order strength, cost structure, utilization level, batch policy, and uncertainty level. Computation times exhibit near linear growth in problem size. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

8.
We consider a single-machine scheduling problem with the objective of minimizing the mean (or equivalently, total) tardiness and earliness when due dates may differ among jobs. Some properties of the optimal solution are discussed, and these properties are used to develop both optimal and heuristic algorithms. Results of computational tests indicate that optimal solutions can be found for problems with up to 20 jobs, and that two of the heuristic procedures provide optimal or very near optimal solutions in many instances. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Common due date problems have been extensively discussed in the scheduling literature. Initially, these problems discussed finding a common due date for a set of jobs on a single machine. These single machine problems were later extended to finding the common due date on a set of parallel machines. This paper further extends the single machine problem to finding multiple common due dates on a single machine. For a basic and important class of penalty functions, we show that this problem is comparable to the parallel machine problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 293–298, 2001  相似文献   

10.
We consider the nonpermutation flow shop problem with release dates, with the objective of minimizing the sum of the weighted completion times on the final machine. Since the problem is NP‐hard, we focus on the analysis of the performance of several approximation algorithms, all of which are related to the classical Weighted Shortest Processing Time Among Available Jobs heuristic. In particular, we perform a probabilistic analysis and prove that two online heuristics and one offline heuristic are asymptotically optimal. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

11.
This paper considers a single-machine scheduling problem in which penalities occur when a job is completed early or late. The objective is to minimize the total penalty subject to restrictive assumptions on the due dates and penalty functions for jobs. A procedure is presented for finding an optimal schedule.  相似文献   

12.
一类装甲车辆对不平路面的激励响应模型   总被引:1,自引:0,他引:1  
研究内容为(轮式、履带)车辆在不平路面行驶和通过障碍时的平顺性问题。利用状态方程法建立了包括随机和确定路面轮廓、3维车体等较为通用的车辆行驶平顺性模型。并针对行驶振动中车轮与悬架的碰撞建立了专门模型。对某型装甲车辆进行了计算机仿真和验证,对模型的精度和有效性进行检验和评估。结果表明所建立的车辆-地面系统模型是有效的。该模型和建模采用的方法为装甲车辆的系统设计和动力学分析提供了一条途径。  相似文献   

13.
In this paper, a single‐machine scheduling problem with weighted earliness and tardiness penalties is considered. Idle time between two adjacent jobs is permitted and due dates of jobs could be unequal. The dominance rules are utilized to develop a relationship matrix, which allows a branch‐and‐bound algorithm to eliminate a high percentage of infeasible solutions. After combining this matrix with a branching strategy, a procedure to solve the problem is proposed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 760–780, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10039  相似文献   

14.
The concept of parallel operations has been widely used in manufacturing and data processing. However, not many efficient methods have been proposed to reduce job tardiness. This article proposes an efficient heuristic to minimize the mean tardiness of a set of tasks with known processing times and due dates for single and m parallel machines. For the single-machine case, the proposed heuristic is compared with the well-known Wilkerson and Irwin algorithm; for the m parallel machine case, it is compared with an extension of the Wilkerson-Irwin algorithm. We also introduce a simple dispatching rule, and it is compared with some existing dispatching rules. The comprehensive simulation results show that the proposed heuristic performs better than the Wilkerson-Irwin algorithm at a significantly reduced computational time.  相似文献   

15.
The resource leveling problem for a construction system producing a stream of output units is considered. The system is modeled using a critical-path-analysis activity network, from which an extended network is developed for an integrated planning effort of all output units. Activity intensity variables are defined which measure activity demand rates for resources and consequent activity durations for the production of each output unit. A heuristic approach consisting of an iterative nonlinear programming procedure is presented which computes activity durations (intensities) for the minimization of resource capacity costs subject to meeting construction due dates. The application to a major ship overhaul project is described, in which the procedure was used to level workloads of the various labor–trade shops.  相似文献   

16.
Transnational terrorism data are difficult to forecast because they contain an unknown number of structural breaks of unknown functional form. The rise of religious fundamentalism, the demise of the Soviet Union, and the rise of al Qaeda have changed the nature of transnational terrorism. ‘Old School’ forecasting methods simply smooth or difference the data. ‘New School’ methods use estimated break dates to control for regime shifts when forecasting. We compare the various forecasting methods using a Monte Carlo study with data containing different types of breaks. The study's results are used to forecast various types of transnational terrorist incidents.  相似文献   

17.
We consider a single-machine scheduling model in which the job processing times are controllable variables with linear costs. The objective is to minimize the sum of the cost incurred in compressing job processing times and the cost associated with the number of late jobs. The problem is shown to be NP-hard even when the due dates of all jobs are identical. We present a dynamic programming solution algorithm and a fully polynomial approximation scheme for the problem. Several efficient heuristics are proposed for solving the problem. Computational experiments demonstrate that the heuristics are capable of producing near-optimal solutions quickly. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 67–82, 1998  相似文献   

18.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   

19.
We study competitive due‐date and capacity management between the marketing and engineering divisions within an engineer‐to‐order (ETO) firm. Marketing interacts directly with the customers and quotes due‐dates for their orders. Engineering is primarily concerned with the efficient utilization of resources and is willing to increase capacity if the cost is compensated. The two divisions share the responsibility for timely delivery of the jobs. We model the interaction between marketing and engineering as a Nash game and investigate the effect of internal competition on the equilibrium decisions. We observe that the internal competition not only degrades the firm's overall profitability but also the serviceability. Finally, we extend our analysis to multiple‐job settings that consider both flexible and inflexible capacity. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
The dynamic transportation problem is a transportation problem over time. That is, a problem of selecting at each instant of time t, the optimal flow of commodities from various sources to various sinks in a given network so as to minimize the total cost of transportation subject to some supply and demand constraints. While the earliest formulation of the problem dates back to 1958 as a problem of finding the maximal flow through a dynamic network in a given time, the problem has received wider attention only in the last ten years. During these years, the problem has been tackled by network techniques, linear programming, dynamic programming, combinational methods, nonlinear programming and finally, the optimal control theory. This paper is an up-to-date survey of the various analyses of the problem along with a critical discussion, comparison, and extensions of various formulations and techniques used. The survey concludes with a number of important suggestions for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号