首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   

2.
A single machine sequencing problem is considered in which there are ready-time and due-date constraints on jobs and vacation constraints on the machine. Each vacation has fixed starting and finish time and no preemption is allowed for the jobs. The objective is to minimize maximum lateness. An intriguing feature of this formulation is that it allows sequencing in disconnected time windows. A relaxation of the problem is obtained by modeling the vacations as a set of jobs with flexible ready-times and artificial due-dates and a branch and bound algorithm is developed for the problem. In the algorithm, the search is not only guided by the bounds but also by a careful manipulation of the artificial due-dates. Consequently; while searching in the relaxed solution space, solutions of the original problem are implicitly enumerated. Computational results indicate that the algorithm can satisfactorily solve problems with multiple vacations.  相似文献   

3.
A set of edges D called an isolation set, is said to isolate a set of nodes R from an undirected network if every chain between the nodes in R contains at least one edge from the set D. Associated with each edge of the network is a positive cost. The isolation problem is concerned with finding an isolation set such that the sum of its edge costs is a minimum. This paper formulates the problem of determining the minimal cost isolation as a 0–1 integer linear programming problem. An algorithm is presented which applies a branch and bound enumerative scheme to a decomposed linear program whose dual subproblems are minimal cost network flow problems. Computational results are given. The problem is also formulated as a special quadratic assignment problem and an algorithm is presented that finds a local optimal solution. This local solution is used for an initial bound.  相似文献   

4.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

5.
Three methods are used to solve the following problem: For P, a positive constant, maximize (P. Reliability-cost) of a system with standby redundancy. The results show that a method which rounds a noninteger solution to the nearest integer solution can lead to tremendous mistakes. However, neither a well known dynamic programming algorithm nor a previously developed branch and bound technique are able to solve large size problems. The solution of problems of large dimension thus requires the use of the noninteger solution of the first method to limit the number of possible solutions when using either the dynamic programming algorithm or a modified branch and bound technique. With this assistance, the branch and bound technique is able to solve large problems in a short amount of computational time.  相似文献   

6.
防空监视网络传感器资源分配的最优化   总被引:1,自引:0,他引:1  
针对防空监视网络的传感器管理问题,讨论了传感器资源分配的最优化方法。提出了把传感器资源分配问题映射为多代理系统分布约束最优化问题的解决策略,设计了基于约束代价下界搜索的异步分枝定界最优化算法,实现了传感器资源分配问题最优解的异步并行搜索,给出的仿真实例说明了传感器资源分配最优化方法的有效性。  相似文献   

7.
We introduce a formulation and an exact solution method for a nonpreemptive resource constrained project scheduling problem in which the duration/cost of an activity is determined by the mode selection and the duration reduction (crashing) within the mode. This problem is a natural combination of the time/cost tradeoff problem and the resource constrained project scheduling problem. It involves the determination, for each activity, of its resource requirements, the extent of crashing, and its start time so that the total project cost is minimized. We present a branch and bound procedure and report computational results with a set of 160 problems. Computational results demonstrate the effectiveness of our procedure. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 107–127, 2001  相似文献   

8.
The fixed charge problem is a nonlinear programming problem of practical interest in business and industry. Yet, until now no computationally feasible exact method of solution for large problems had been developed. In this paper an exact algorithm is presented which is computationally feasible for large problems. The algorithm is based upon a branch and bound approach, with the additional feature that the amount of computer storage required remains constant throughout (for a problem of any given size). Also presented are three suboptimal heuristic algorithms which are of interest because, although they do not guarantee that the true optimal solution will be found, they usually yield very good solutions and are extremely rapid techniques. Computational results are described for several of the heuristic methods and for the branch and bound algorithm.  相似文献   

9.
In this study we present an integer programming model for determining an optimal inbound consolidation strategy for a purchasing manager who receives items from several suppliers. The model considers multiple suppliers with limited capacity, transportation economies, and quantity discounts. We propose an integrated branch and bound procedure for solving the model. This procedure, applied to a Lagrangean dual at every node of the search tree, combines the subgradient method with a primal heuristic that interact to change the Lagrangean multipliers and tighten the upper and lower bounds. An enhancement to the branch and bound procedure is developed using surrogate constraints, which is found to be beneficial for solving large problems. We report computational results for a variety of problems, with as many as 70,200 variables and 3665 constraints. Computational testing indicates that our procedure is significantly faster than the general purpose integer programming code OSL. A regression analysis is performed to determine the most significant parameters of our model. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 579–598, 1998  相似文献   

10.
A naval task group (TG) is a collection of naval combatants and auxiliaries that are grouped together for the accomplishment of one or more missions. Ships forming a TG are located in predefined sectors. We define determination of ship sector locations to provide a robust air defense formation as the sector allocation problem (SAP). A robust formation is one that is very effective against a variety of attack scenarios but not necessarily the most effective against any scenario. We propose a 0‐1 integer linear programming formulation for SAP. The model takes the size and the direction of threat into account as well as the defensive weapons of the naval TG. We develop tight lower and upper bounds by incorporating some valid inequalities and use a branch and bound algorithm to exactly solve SAP. We report computational results that demonstrate the effectiveness of the proposed solution approach. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
根据区域目标的侦察需求,研究了面向区域目标的多星调度问题。分析了调度问题中活动收益不确定特征,讨论了活动收益的上下界。针对收益不确定的特点,设计了影响力指标用于评估活动对调度方案的影响。基于活动影响力与执行时间设计了一种带局部诱导的禁忌搜索算法,采用分层次的、变评价函数机制引导求解过程趋向多目标优化,在优先提高覆盖率的同时兼顾减少资源消耗。最后,以算例验证了算法的有效性,并通过方案比较说明算法具有较好的寻优能力。  相似文献   

12.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
This paper introduces an efficient heuristic procedure for a special class of mixed integer programming problems called the uncapacitated warehouse (plant) location problem. This procedure is derived from the branching decision rules proposed for the branch and bound algorithm by the author in an earlier paper. It can be viewed as tracing a single path of the branch and bound tree (from the initial node to the terminal node), the path being determined by the particular branching decision rule used. Unlike branch and bound the computational efficiency of this procedure is substantially less than linearly related to the number of potential warehouse locations (integer variables) in the problem. Its computational efficiency is tested on problems found in the literature.  相似文献   

14.
In this paper we address the cyclic scheduling problem in flow lines. We develop a modeling framework and an integer programming formulation of the problem. We subsequently present exact and approximate solution procedures. The exact solution procedure is a branch-and-bound algorithm which uses Lagrangian and station-based relaxations of the integer programming formulation of the problem as the lower bounding method. Our heuristic procedures show a performance superior to the available ones in the literature. Finally, we address the stability issue in cyclic scheduling, demonstrate its relationship to the work-in-progress inventory control of a flow line, and present a very simple procedure to generate stable schedules in flow lines. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
In this article we try to identify appropriate solution procedures for different types of multiechelon production planning problems. We conduct an extensive computational study on uncapacitated multiechelon production planning problems with serial and assembly types of bill-of-material structures. Problems are formulated as both single-source fixed charge network problems and as multicommodity flow problems with fixed charges. Solution procedures considered are branch and cut, Lagrangean relaxation (for the network formulation), and branch and bound (for the multicommodity formulation). Three hundred problems with various problem structures are tested. Our conclusions suggest the best approach for each type of problem structure. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
This article considers the order batching problem in steelmaking and continuous‐casting production. The problem is to jointly specify the slabs needed to satisfy each customer order and group all the slabs of different customer orders into production batches. A novel mixed integer programming model is formulated for the problem. Through relaxing the order assignment constraints, a Lagrangian relaxation model is then obtained. By exploiting the relationship between Lagrangian relaxation and column generation, we develop a combined algorithm that contains nested double loops. At the inner loop, the subgradient method is applied for approximating the Lagrangian dual problem and pricing out columns of the master problem corresponding to the linear dual form of the Lagrangian dual problem. At the outer loop, column generation is employed to solve the master problem exactly and adjust Lagrangian multipliers. Computational experiments are carried out using real data collected from a large steel company, as well as on large‐scaled problem instances randomly generated. The results demonstrate that the combined algorithm can obtain tighter lower bound and higher quality solution within an acceptable computation time as compared to the conventional Lagrangian relaxation algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

17.
The gradual covering problem   总被引:1,自引:0,他引:1  
In this paper we investigate the gradual covering problem. Within a certain distance from the facility the demand point is fully covered, and beyond another specified distance the demand point is not covered. Between these two given distances the coverage is linear in the distance from the facility. This formulation can be converted to the Weber problem by imposing a special structure on its cost function. The cost is zero (negligible) up to a certain minimum distance, and it is a constant beyond a certain maximum distance. Between these two extreme distances the cost is linear in the distance. The problem is analyzed and a branch and bound procedure is proposed for its solution. Computational results are presented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

18.
A general algorithm is developed for minimizing a well defined concave function over a convex polyhedron. The algorithm is basically a branch and bound technique which utilizes a special cutting plane procedure to' identify the global minimum extreme point of the convex polyhedron. The indicated cutting plane method is based on Glover's general theory for constructing legitimate cuts to identify certain points in a given convex polyhedron. It is shown that the crux of the algorithm is the development of a linear undrestimator for the constrained concave objective function. Applications of the algorithm to the fixed-charge problem, the separable concave programming problem, the quadratic problem, and the 0-1 mixed integer problem are discussed. Computer results for the fixed-charge problem are also presented.  相似文献   

19.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

20.
This paper introduces an efficient heuristic procedure for solving a special class of mixed integer programming problem called the capacitated warehouse (plant) location problem. This procedure parallels the work reported earlier in [9] on the uncapacitated warehouse location problem. The procedure can be viewed as tracing a judiciously selected path of the branch and bound tree (from the initial node to the terminal node) to arrive at a candidate solution. A simple backtracking scheme is also incorporated in the procedure to investigate possible improvement in the solution. Computational results on problems found in the literature look quite encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号