首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We formulate exact expressions for the expected values of selected estimators of the variance parameter (that is, the sum of covariances at all lags) of a steady‐state simulation output process. Given in terms of the autocovariance function of the process, these expressions are derived for variance estimators based on the simulation analysis methods of nonoverlapping batch means, overlapping batch means, and standardized time series. Comparing estimator performance in a first‐order autoregressive process and the M/M/1 queue‐waiting‐time process, we find that certain standardized time series estimators outperform their competitors as the sample size becomes large. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
We propose three related estimators for the variance parameter arising from a steady‐state simulation process. All are based on combinations of standardized‐time‐series area and Cramér–von Mises (CvM) estimators. The first is a straightforward linear combination of the area and CvM estimators; the second resembles a Durbin–Watson statistic; and the third is related to a jackknifed version of the first. The main derivations yield analytical expressions for the bias and variance of the new estimators. These results show that the new estimators often perform better than the pure area, pure CvM, and benchmark nonoverlapping and overlapping batch means estimators, especially in terms of variance and mean squared error. We also give exact and Monte Carlo examples illustrating our findings.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

3.
In this paper we consider a simple three-order-statistic asymptotically unbiased estimator of the Weibull shape parameter c for the case in which all three parameters are unknown. Optimal quantiles that minimize the asymptotic variance of this estimator, c? are determined and shown to depend only on the true (unknown) shape parameter value c and in a rather insensitive way. Monte Carlo studies further verified that, in practice where the true shape parameter c is unknown, using always c? with the optimal quantities that correspond to c = 2.0 produces estimates, c?, remarkably close to the theoretical optimal. A second stage estimation procedure, namely recalculating c? based on the optimal quantiles corresponding to c?, was not worth the additional effort. Benchmark simulation comparisons were also made with the best percentile estimator of Zanakis [20] and with a new estimator of Wyckoff, Bain and Engelhardt [18], one that appears to be the best of proposed closed-form estimators but uses all sample observations. The proposed estimator, c?, should be of interest to practitioners having limited resources and to researchers as a starting point for more accurate iterative estimation procedures. Its form is independent of all three Weibull parameters and, for not too large sample sizes, it requires the first, last and only one other (early) ordered observation. Practical guidelines are provided for choosing the best anticipated estimator of shape for a three-parameter Weibull distribution under different circumstances.  相似文献   

4.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
This article considers the problem of estimating parameters of the demand distribution in lost sales inventory systems. In periods when lost sales occur demand is not observed; one knows only that demand is larger than sales. We assume that demands form a sequence of IID normal random variables, which could be a residual demand process after filtering out seasonality and promotional nonstationarities. We examine three estimators for the mean and standard deviation: maximum likelihood estimator, BLUE (best linear unbiased estimator), and a new estimator derived here. Extensive simulations are reported to compare the performance of the estimators for small and large samples and a variety of parameter settings. In addition, I show how all three estimators can be incorporated into sequential updating routines. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

7.
The robustness of the assigned prior distribution in a Bayesian estimation problem is examined. A Bayesian analysis for a stochastic intensity parameter of a Poisson distribution is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by assuming the existence of a true prior which is different in form from that of the assigned prior distribution. By using mean-squared error as a measure of performance, the ensuing Bayes decision function is compared to the corresponding minimum variance unbiased estimator. Results indicate that the Bayes estimator is largely robust to deviations from the assigned prior and remains squared-error superior to the MVU type within a broad region.  相似文献   

8.
We present a family of tests to detect the presence of a transient mean in a simulation process. These tests compare variance estimators from different parts of a simulation run, and are based on the methods of batch means and standardized time series. Our tests can be viewed as natural generalizations of some previously published work. We also include a power analysis of the new tests, as well as some illustrative examples. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Conventional control charts are often designed to optimize out‐of‐control average run length (ARL), while constraining in‐control ARL to a desired value. The widely employed grid search approach in statistical process control (SPC) is time‐consuming with unsatisfactory accuracy. Although the simulation‐based ARL gradient estimators proposed by Fu and Hu [Manag Sci 45 (1999), 395–413] can alleviate this issue, it still requires a large number of simulation runs to significantly reduce the variance of gradient estimators. This article proposes a novel ARL gradient estimation approach based on integral equation for efficient analysis and design of control charts. Although this article compares with the results of Fu and Hu [Manag Sci 45 (1999), 395–413] based on the exponentially weighted moving average (EWMA) control chart, the proposed approach has wide applicability as it can generally fit into any control chart with Markovian property under any distributions. It is shown that the proposed method is able to provide a fast, accurate, and easy‐to‐implement algorithm for the design and analysis of EWMA charts, as compared to the simulation‐based gradient estimation method. Moreover, the proposed gradient estimation method facilitates the computation of high‐order derivatives that are valuable in sensitivity analysis. The code is written in Matlab, which is available on request. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 223–237, 2014  相似文献   

10.
The estimation problem of normal tail probabilities is considered. The form of generalized Bayes estimators is derived and the asymptotic behavior of the mean square errors is studied. This study shows that the best unbiased estimator, a formula for which is given, is superior to the maximum likelihoood estimator or to a class of generalized Bayes procedures for large parametric values, but can be significantly improved for moderate values of the parameter.  相似文献   

11.
The maximum likelihood estimator of the service distribution function of an M/G/∞ service system is obtained based on output time observations. This estimator is useful when observation of the service time of each customer could introduce bias or may be impossible. The maximum likelihood estimator is compared to the estimator proposed by Mark Brown, [2]. Relative to each other, Brown's estimator is useful in light traffic while the maximum likelihood estimator is applicble in heavy trafic. Both estimators are compared to the empirical distribution function based on a sample of service times and are found to have drawbacks although each estimator may have applications in special circumstances.  相似文献   

12.
The Signal‐to‐Interference‐plus‐Noise Ratio (SINR) is an important metric of wireless communication link quality. SINR estimates have several important applications. These include optimizing the transmit power level for a target quality of service, assisting with handoff decisions and dynamically adapting the data rate for wireless Internet applications. Accurate SINR estimation provides for both a more efficient system and a higher user‐perceived quality of service. In this paper, we develop new SINR estimators and compare their mean squared error (MSE) performance. We show that our new estimators dominate estimators that have previously appeared in the literature with respect to MSE. The sequence of transmitted bits in wireless communication systems consists of both pilot bits (which are known both to the transmitter and receiver) and user bits (which are known only by the transmitter). The SINR estimators we consider alternatively depend exclusively on pilot bits, exclusively on user bits, or simultaneously use both pilot and user bits. In addition, we consider estimators that utilize smoothing and feedback mechanisms. Smoothed estimators are motivated by the fact that the interference component of the SINR changes relatively slowly with time, typically with the addition or departure of a user to the system. Feedback estimators are motivated by the fact that receivers typically decode bits correctly with a very high probability, and therefore user bits can be thought of as quasipilot bits. For each estimator discussed, we derive an exact or approximate formula for its MSE. Satterthwaite approximations, noncentral F distributions (singly and doubly) and distribution theory of quadratic forms are the key statistical tools used in developing the MSE formulas. In the case of approximate MSE formulas, we validate their accuracy using simulation techniques. The approximate MSE formulas, of interest in their own right for comparing the quality of the estimators, are also used for optimally combining estimators. In particular, we derive optimal weights for linearly combining an estimator based on pilot bits with an estimator based on user bits. The optimal weights depend on the MSE of the two estimators being combined, and thus the accurate approximate MSE formulas can conveniently be used. The optimal weights also depend on the unknown SINR, and therefore need to be estimated in order to construct a useable combined estimator. The impact on the MSE of the combined estimator due to estimating the weights is examined. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

13.
In this article we study the estimation of the average excess life θ in a two-parameter exponential distribution with a known linear relationship between α (the minimum life) and θ of the form α = aθ, where a is known and positive. A comparison of the efficiencies of estimators which are linear combinations of the smallest sample value and the sample sum of deviations from the smallest sample value and the maximum likelihood estimators is made for various sample sizes and different values of a. It is shown that these estimators are dominated in the risk by the minimum-risk scale equivariant estimator based on sufficient statistics. A class of Bayes estimators for inverted gamma priors is constructed and shown to include a minimum-risk scale equivariant estimator in it. All the members of this class can be computed easily.  相似文献   

14.
针对基于双曲线定位的DV-Hop算法中误差项的异方差性引起的定位误差大的问题,提出了一种基于加权双曲线定位的DV-Hop改进算法。算法分析了基于双曲线定位的DV-Hop算法模型中误差项的异方差性,用加权最小二乘法对异方差性进行纠正,对加权最小二乘法中的权值矩阵进行了理论推导并得到与跳数相关的最佳权值矩阵,使得误差项满足同方差性,所得估计值接近最佳线性无偏估计。仿真结果表明,所提算法在定位精度上较目前常见的基于双曲线定位的DV-Hop算法都有一定提高。  相似文献   

15.
This article presents new tools and methods for finding optimum step‐stress accelerated life test plans. First, we present an approach to calculate the large‐sample approximate variance of the maximum likelihood estimator of a quantile of the failure time distribution at use conditions from a step‐stress accelerated life test. The approach allows for multistep stress changes and censoring for general log‐location‐scale distributions based on a cumulative exposure model. As an application of this approach, the optimum variance is studied as a function of shape parameter for both Weibull and lognormal distributions. Graphical comparisons among test plans using step‐up, step‐down, and constant‐stress patterns are also presented. The results show that depending on the values of the model parameters and quantile of interest, each of the three test plans can be preferable in terms of optimum variance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

16.
测距精度是评估卫星自主完好性监测(SAIM)接收机在导航信号畸变环境下工作性能的一个重要指标,论文从数学上推导出了SAIM接收机在国际民航组织(ICAO)二阶阶跃畸变模型下采用早晚相干跟踪处理时测距精度与畸变模型参数的解析表达式,理论分析和仿真结果表明数字畸变将导致接收机伪码鉴相器输出曲线存在过零点偏差,数字畸变量基本不影响接收机测距方差;模拟畸变将扭曲相关峰函数和鉴相器输出曲线,但鉴相器输出基本上不存在过零点偏差,模拟畸变参数、前端滤波器带宽和早晚码间距共同影响接收机的测距方差。  相似文献   

17.
Consider the problem of estimating the common location parameter of two exponential distributions when censored samples are taken. The unique minimum variance unbiased estimator (UMVUE) is found along with an expression for its variance. The asymptotic distribution is given for a special case and a generalized Bayes property is exhibited. Extensions include the case of k > 2 populations. Also the UMVUE is found for P(Y > X) and certain reliability functions.  相似文献   

18.
提出了一种基于小波变换的宽带模糊函数参数估计器,即通过交互小波变换计算宽带模糊函数,取宽带模糊函数模的平方的峰值点对应参数作为目标时延与时间伸缩的估计.仿真结果表明,该估计器的估计性能好于直接模糊函数估计器,且计算方便,非常适合于实际宽带处理系统应用.  相似文献   

19.
The problem of estimation of the common scale parameter of two Pareto distributions with unknown and unequal shape parameters in censored samples is considered. The uniformly minimum variance unbiased estimator (UMVUE) is given along with the UMVUE of its variance.  相似文献   

20.
The estimation of optimal solution values for large-scale optimization problems is studied. Optimal solution value estimators provide information about the deviation between the optimal solution and the heuristic solution. Some estimation techniques combine heuristic solutions with randomly generated solutions. In particular, we examine a class of jacknife-based estimators which incorporate any heuristic solution value with the two best randomly generated solution values. The primary contribution of this article is that we provide a framework to analytically evaluate a class of optimal solution value estimators. We present closed-form results on the relationship of heuristic performance, sample size, and the estimation errors for the case where the feasible solutions are uniformly distributed. In addition, we show how to compute the estimation errors for distributions other than uniform given a specific sample size. We use a triangular and an exponential distribution as examples of other distributions. A second major contribution of this article is that, to a large extent, our analytical results confirm previous computational results. In particular, the best estimator depends on how good the heuristic is, but seems to be independent of the underlying distribution of solution values. Furthermore, there is essentially an inverse relationship between the heuristic performance and the performance of any estimator. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号