首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   

2.
We consider a queueing system with batch Poisson arrivals subject to disasters which occur independently according to a Poisson process but affect the system only when the server is busy, in which case the system is cleared of all customers. Following a disaster that affects the system, the server initiates a repair period during which arriving customers accumulate without receiving service. The server operates under a Multiple Adapted Vacation policy. The stationary regime of this process is analyzed using the supplementary variables method. We obtain the probability generating function of the number of customers in the system, the fraction of customers who complete service, and the Laplace transform of the system time of a typical customer in stationarity. The stability condition for the system and the Laplace transform of the time between two consecutive disasters affecting the system is obtained by analyzing an embedded Markov renewal process. The statistical characteristics of the batches that complete service without being affected by disasters and those of the partially served batches are also derived. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 171–189, 2015  相似文献   

3.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

4.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

5.
Retrial queueing systems are widely used in teletraffic theory and computer and communication networks. Although there has been a rapid growth in the literature on retrial queueing systems, the research on retrial queues with nonexponential retrial times is very limited. This paper is concerned with the analytical treatment of an M/G/1 retrial queue with general retrial times. Our queueing model is different from most single server retrial queueing models in several respectives. First, customers who find the server busy are queued in the orbit in accordance with an FCFS (first‐come‐first‐served) discipline and only the customer at the head of the queue is allowed for access to the server. Besides, a retrial time begins (if applicable) only when the server completes a service rather upon a service attempt failure. We carry out an extensive analysis of the queue, including a necessary and sufficient condition for the system to be stable, the steady state distribution of the server state and the orbit length, the waiting time distribution, the busy period, and other related quantities. Finally, we study the joint distribution of the server state and the orbit length in non‐stationary regime. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 561–581, 1999  相似文献   

6.
The M/G/1 queue with repeated attempts is considered. A customer who finds the server busy, leaves the service area and joins a pool of unsatisfied customers. Each customer in the pool repeats his demand after a random amount of time until he finds the server free. We focus on the busy period L of the M/G/1$ retrial queue. The structure of the busy period and its analysis in terms of Laplace transforms have been discussed by several authors. However, this solution has serious limitations in practice. For instance, we cannot compute the first moments of L by direct differentiation. This paper complements the existing work and provides a direct method of calculation for the second moment of L. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 115–127, 2000  相似文献   

7.
We consider a single‐queue with exhaustive or gated time‐limited services and server vacations, in which the length of each service period at the queue is controlled by a timer, i.e., the server serves customers until the timer expires or the queue becomes empty, whichever occurs first, and then takes vacations. The customer whose service is interrupted due to the timer expiration may be attended according to nonpreemptive or preemptive service disciplines. For the M/G/1 exhaustive/gated time‐limited service queueing system with an exponential timer and four typical preemptive/nonpreemptive service disciplines, we derive the Laplace—Stieltjes transforms and the moment formulas for waiting times and sojourn times through a unified approach, and provide some new results for these time‐limited service disciplines. © John Wiley & Sons, Inc. Naval Research Logistics 48: 638–651, 2001.  相似文献   

8.
The busy period, busy cycle, and the numbers of customers served and lost therein, of the G/M/m queue with balking is studied via the embedded Markov chain approach. It is shown that the expectations of the two discrete variables give the loss probability. For the special case G/M/1/N a closed expression in terms of contour integrals is obtained for the Laplace transform of these four variables. This yields as a byproduct the LIFO waiting time distribution for the G/M/m/N queue. The waiting time under random order service for this queue is also studied.  相似文献   

9.
Consider a distributed system where many gatekeepers share a single server. Customers arrive at each gatekeeper according to independent Poisson processes with different rates. Upon arrival of a new customer, the gatekeeper has to decide whether to admit the customer by sending it to the server, or to block it. Blocking costs nothing. The gatekeeper receives a reward after a customer completes the service, and incurs a cost if an admitted customer finds a busy server and therefore has to leave the system. Assuming an exponential service distribution, we formulate the problem as an n‐person non‐zero‐sum game in which each gatekeeper is interested in maximizing its own long‐run average reward. The key result is that each gatekeeper's optimal policy is that of a threshold type regardless what other gatekeepers do. We then derive Nash equilibria and discuss interesting insights. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 702–718, 2003.  相似文献   

10.
In this paper, we give an explicit relation between steady‐state probability distributions of the buffer occupancy at customer entrance and departure epochs, for the classical single‐server system G/G[N]/1 with batch services and for the finite capacity case. The method relies on level‐crossing arguments. For the particular case of Poisson input, we also express the loss probability in terms of state probabilities at departure epochs, yielding probabilities observed by arriving customers. This work provides the “bulk queue” version of a result established by Burke, who stated the equality between probabilities at arrival and departure epochs for systems with “unit jumps.” © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 107–118, 1999  相似文献   

11.
The two purposes of this article are to illustrate the power and simplicity of level crossing analysis and to present a conservation identity for M/G/1 priority queues with server vacations. To illustrate the use of level crossing analysis we apply it to preemptive (resume) priority M/G/1 queues with single- and multiple-server vacations considered by Kella and Yechiali (1986) and to non-preemptive priority M/M/c queues considered by Kella and Yechiali (1985). The conservation identity presented here states that the ratios of mean waiting times in an M/G/1 queue with and without server vacation policies are independent of the service discipline for first come first served, shortest processing time, shortest processing time within generations and non-preemptive priority service disciplines.  相似文献   

12.
In this article, we study a queueing system serving multiple classes of customers. Each class has a finite‐calling population. The customers are served according to the preemptive‐resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady‐state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation‐independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

13.
In many practical multiserver queueing systems, servers not only serve randomly arriving customers but also work on the secondary jobs with infinite backlog during their idle time. In this paper, we propose a c‐server model with a two‐threshold policy, denoted by (e d), to evaluate the performance of this class of systems. With such a policy, when the number of idle servers has reached d (<c), then e (<d) idle agents will process secondary jobs. These e servers keep working on the secondary jobs until they find waiting customers exist in the system at a secondary job completion instant. Using the matrix analytic method, we obtain the stationary performance measures for evaluating different (e, d) policies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

14.
An explicit steady state solution is determined for the distribution of the number of customers for a queueing system in which Poisson arrivals are bulks of random size. The number of customers per bulk varies randomly between 1 and m, m arbitrary, according to a point multinomial, and customer service is exponential. Queue characteristics are given.  相似文献   

15.
This article deals with the M/G/1 queue with server vacations in which the return of the server to service depends on the number of customers present in the system. The main goal is optimization, which is done under the average cost criterion in the multiple- and single-vacation models as well as for the “total cost for one busy cycle” criterion in the multiple-vacation case. Expressions that characterize the optimal number of customers, below which the server should not start a new service period, are exhibited for the various cases. It is found that under the average cost criterion, the expression may be universal in the sense that it may hold for a general class of problems including such that arise in production planning and inventory theory (for the particular cost structure discussed).  相似文献   

16.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

17.
We consider a finite-capacity single-server queue in which arrivals occur one at a time, according to a renewal process. The successive service times are mutually independent and have a common phase-type distribution. The customers are served in groups of size at least L, a preassigned threshold value. Explicit analytic expressions for the steady-state queue-length densities at arrivals and at arbitrary time points, and the throughput of the system are obtained. The Laplace-Stieltjes transform of the stationary waiting-time distribution of an admitted customer at points of arrivals is computed. It is shown to be of phase type when the arrival process is also of phase type. Efficient algorithmic procedures for the steady-state analysis of the model are presented. These procedures are used in arriving at an optimal value for L that minimizes the mean waiting time of an admitted customer. A conjecture on the nature of the mean waiting time is proposed.  相似文献   

18.
M/G/1(RVT,P(j))表示服务员具有随机长度休息时间(RVT)的、且一休息时间结束时有 j 个顾客等待的概率为 P(j)的、修正的 M/G/1 排队系统。我们用嵌入 Markov 链的技术已详细地分析过这一排队系统,这里提供另一分析方法。最后,应用这个排队系统的分析结果,对时隙 ALOHA 卫星公用信道的分组碰撞概率计算公式作了推导。  相似文献   

19.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

20.
In this article, we seek to understand how a capacity‐constrained seller optimally prices and schedules product shipping to customers who are heterogeneous on willingness to pay (WTP) and willingness to wait (WTW). The capacity‐constrained seller does not observe each customer's WTP and WTW and knows only the aggregate distributions of WTP and WTW. The seller's problem is modeled as an M/M/Ns queueing model with multiclass customers and multidimensional information screening. We contribute to the literature by providing an optimal and efficient algorithm. Furthermore, we numerically find that customers with a larger waiting cost enjoys a higher scheduling priority, but customers with higher valuation do not necessarily get a higher scheduling priority. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 215–227, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号