首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为研究TA2-B10合金管在不同电偶腐蚀防护方式下对B10管腐蚀特性的影响,在青岛小麦岛海水试验场设置TA2-B10管直接连接、电绝缘连接、电绝缘+涂层连接三组不同电偶腐蚀防护方式对照管道,依次进行1m/s、3m/s、4m/s流动海水与浸泡交替腐蚀试验。对试验后的三组B10管道线切割,通过管道内表面电位分布试验分析不同电偶腐蚀防护方式下B10管道的腐蚀类型;采用动电位极化曲线、电化学阻抗谱和微观表征,分析不同电偶腐蚀防护方式下距离法兰接头250mm处B10管试样的腐蚀特性。结果表明,直接连接TA2-B10管处于电偶腐蚀状态,B10端内电位正移腐蚀加速,电绝缘连接和绝缘+涂层连接TA2-B10管均处于自腐蚀状态,但电绝缘+涂层连接具有更好的绝缘效果;电绝缘+涂层连接防护下的B10试样,腐蚀电流密度最小,自腐蚀电位最负;三组B10试样阻抗谱均呈现单容抗弧特征,电绝缘+涂层连接防护下的B10试样具有更大的传递电阻和膜层电阻;电绝缘+涂层连接能有效减缓点蚀、坑蚀和晶间腐蚀三种腐蚀倾向。以上结果综合说明,绝缘+涂层防护方式具有更好的电偶腐蚀防护效果。  相似文献   

2.
为了研究弹性应力和弹塑性应变对921A船体钢在模拟海水中腐蚀行为的影响,采用自制的载荷-电化学实验装置对921A钢在载荷与腐蚀介质协同作用时的开路电位、动电位极化曲线和电化学阻抗谱等电化学性能进行了测试,并由电化学阻抗谱拟合得到的电荷传递电阻定义载荷下的腐蚀速率修正因子,将实验得到的腐蚀速率修正因子与理论值进行了对比。结果表明:弹性拉应力与弹性压应力对力学化学效应的影响具有对称性。力学化学效应随着弹性应力的增大而增大,随着弹塑性应变的增大先增大后减小。弹塑性应变对力学化学效应的影响远远大于弹性应力的影响。在研究范围内,弹塑性应变引起的腐蚀电位负移量最大为62.6 mV,相应的腐蚀速率修正因子高达4.113,而弹性应力引起的腐蚀电位负移量最大为24.5 mV,相应的腐蚀速率修正因子为1.746。由此可见,应力应变对921A钢在海水中腐蚀行为的影响不容忽视。  相似文献   

3.
针对边界元法推算潜艇腐蚀电场分布时边界条件影响电场信号特征,导致螺旋桨区域产生奇异峰现象的问题,以实测船用921合金钢和镍青铜螺旋桨材料极化曲线作为建模边界条件,重点对比分析了恒电位和非线性边界条件下的电场特征,并通过建立阻抗谱参数下的船壳-螺旋桨电化学阻抗等效电路,分析了潜艇腐蚀电场螺旋桨区域产生奇异峰的原因。仿真结果表明:潜艇电场特征分布及螺旋桨区域奇异峰现象与船体材料电化学极化状态有关,合理设定非线性极化边界参数可达到削弱奇异峰现象、平滑腐蚀电场模型的效果。  相似文献   

4.
采用管形薄壁试样模拟密封结构,通过管形试样的应力状态计算、管形试样和相同尺寸实心圆柱试样的对比腐蚀实验,研究了静水压力交替变化对高强度船体钢在质量百分数为3.5%NaCl溶液中腐蚀行为的影响。结果表明:静水压力交替变化引起的溶液中溶解氧变化影响了高压时的电化学过程以及金属表面形成的腐蚀产物,可降低恢复到常压后的金属的腐蚀速度;静水压力交替变化引起了管形薄壁试样表面的应力、应变变化,高压时试样表面的应力增大可明显促进金属的腐蚀,另外,应力、应变的交替变化改变了金属/腐蚀产物的界面性能,显著促进了金属在常压时的腐蚀。在4 MPa静水压力下,管形试样管壁表面产生30.5~34.5MPa的压应力,静水压力交替变化可使金属腐蚀速度增大20%以上。  相似文献   

5.
潜艇服役期间涂层性能退变影响潜艇电场分布,以材料电化学极化状态为边界条件,应用边界元法建立潜艇涂层性能下降、涂层渗透腐蚀、涂层局部破损极化三种潜艇腐蚀静电场模型,从时域和频域特征对螺旋桨扰动电场模型进行分析。研究结果表明:电化学极化状态对螺旋桨扰动电场的电位信号特征及电场谐波频段影响显著。恒电位、线性极化、非线性极化三种边界条件下,螺旋桨以相同频率旋转扰动静电场时,各模型的频率成分占比差异明显。非线性边界条件下的扰动频率和2倍扰动频占比相差最大,线性边界条件下的扰动频率和2倍扰动频占比相差最小。三种边界条件下电场模型的3倍扰动频以上的谐波范围会发生改变,恒电位边界下模型谐波范围最小,非线性边界条件下谐波范围最大。  相似文献   

6.
层流介质中金属板腐蚀电位分布研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究流动介质中产生的静电场,结合电化学和流体力学相关知识建立层流介质中金属板模型,利用贝塞尔函数展开及其逆运算推导出在三层介质中基于点电荷模型的腐蚀电位解析表达式,同时计算出金属板产生的电场。运用推导出的解析表达式计算出在流动介质中任意场点处金属板随不同流速产生的腐蚀电位,并通过实验验证结果的正确性。结果表明,对层流条件下电化学反应产生的电流密度所建模型的结果与实验测量数据吻合度较高,同时电场分布也会随着流体流速及层流方向上长度的变化而发生变化。  相似文献   

7.
为研究HDR双相不锈钢轴向和径向组织差异性对耐蚀性的影响,基于HDR双相不锈钢管材同时具有铁素体相和奥氏体相的特点,利用金相观察和能谱分析技术,研究了模拟海水浸泡和电化学试验后轴向和径向试样组织耐蚀性差异。研究发现:轴向组织晶粒大于径向组织晶粒、夹杂物均在铁素体相及其边界处,轴向组织比径向组织先发生腐蚀,径向组织耐蚀性比轴向好;轴向自腐蚀电位、钝化膜击破电位均小于径向,且轴向蚀坑深度大于径向;轴向严重腐蚀区域生成两层富Cl贫Cr腐蚀产物膜,且外层腐蚀产物膜氧含量比内层膜高。  相似文献   

8.
摘要:采用电化学极化手段和慢应变速率拉伸试验,结合扫描电镜观察合金断口形貌,研究了外加电位对7A52铝合金应力腐蚀开裂敏感性的影响。研究结果表明:合金在3.5%NaCl溶液中的应力腐蚀开裂敏感性与外加电位有强烈的相关性,开裂敏感性在外加电位为一0.95V时最低,外加电位起到阴极保护的作用;在外加电位为一1V时有所升高,但仍然低于开路电位条件下的敏感性;在一1.1V时最高,应力腐蚀过程以氢脆为主;在一1.2V时又有所降低,阴极析出的氢以气态逸出而降低应力腐蚀开裂敏感性。  相似文献   

9.
用动电位扫描法研究了钛材在含有不同氯离子浓度溶液中和含有PO3-4离子的氯离子溶液中的电化学行为.利用线性极化法,测得钛在上述介质中的腐蚀速率.实验结果表明,钛在上述介质中具有非常好的耐蚀性能.  相似文献   

10.
为了对潜艇涂层破损状态的水下腐蚀电场进行快速评估,基于电化学腐蚀原理和潜艇结构特点,建立潜艇涂层局部破损时的腐蚀电流等效电路,对潜艇涂层局部破损时的腐蚀电流强度进行估算,并基于点电流源对潜艇腐蚀电场建模,将潜艇涂层破损部位和裸露螺旋桨等效为点电流源,利用点电流源在分层介质中的电场计算公式对潜艇涂层破损时的腐蚀稳恒电场进行估算。与某型潜艇腐蚀电场商业有限元软件COMSOL仿真结果对比表明:该估算方法得到的潜艇表面腐蚀电流和不同路径电场分布曲线规律与COMSOL仿真结果基本一致,电流估算值相对误差不超过6.5%,电场各分量峰峰值相对误差不超过18%。  相似文献   

11.
《防务技术》2015,11(3)
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.  相似文献   

12.
《防务技术》2015,11(3)
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.  相似文献   

13.
Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding(GTAW) process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking(SCC). The present study is aimed at studying the SCC behaviour of MDN 250(18% Ni) steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing(480 C for 3 h), solutionizing(815 C for 1 h) followed by ageing and homogenizing(1150 C for 1 h) followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel.  相似文献   

14.
《防务技术》2015,11(4)
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.  相似文献   

15.
《防务技术》2015,11(2)
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.  相似文献   

16.
To overcome the problems of fusion welding of aluminium alloys, the friction stir welding(FSW) is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the FS weld. In the present work, the effect of tool profile on the weld nugget microstructure and pitting corrosion of AA2219 aluminium-copper alloy was studied. FSW of AA2219 alloy was carried out using five profiles, namely conical, square, triangle, pentagon and hexagon. The temperature measurements were made in the region adjacent to the rotating pin. It was observed that the peak temperature is more in hexagonal tool pin compared to the welds produced with other tool pin profiles. It is observed that the extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the hardness and corrosion properties of the joint during FSW. It was found that the microstructure changes like grain size, misorientation and precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for hexagon profile tool compared to other profiles, which was attributed to material flow and strengthening precipitate morphology in nugget zone. Higher amount of heat generation in FS welds made with hexagonal profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone.  相似文献   

17.
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).  相似文献   

18.
采用超声冲击处理工艺对22SiMn2TiB装甲钢试样进行了表面冲击强化,采用四点弯曲加载装置将处理和未处理的试样在3.5%NaCl溶液中进行了150 d的应力腐蚀试验。用X射线应力测定仪测定了应力腐蚀试验前试样表面的残余应力,用扫描电镜和透射电镜观察了处理后试样的断面组织。分析了超声冲击处理引起的残余应力和断面组织变化对改善装甲钢抗应力腐蚀性能的作用。结果表明,超声冲击处理引入的残余压应力和表层晶粒细化可以大大提高22SiMn2TiB装甲钢的抗应力腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号