首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Retrial queueing systems are widely used in teletraffic theory and computer and communication networks. Although there has been a rapid growth in the literature on retrial queueing systems, the research on retrial queues with nonexponential retrial times is very limited. This paper is concerned with the analytical treatment of an M/G/1 retrial queue with general retrial times. Our queueing model is different from most single server retrial queueing models in several respectives. First, customers who find the server busy are queued in the orbit in accordance with an FCFS (first‐come‐first‐served) discipline and only the customer at the head of the queue is allowed for access to the server. Besides, a retrial time begins (if applicable) only when the server completes a service rather upon a service attempt failure. We carry out an extensive analysis of the queue, including a necessary and sufficient condition for the system to be stable, the steady state distribution of the server state and the orbit length, the waiting time distribution, the busy period, and other related quantities. Finally, we study the joint distribution of the server state and the orbit length in non‐stationary regime. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 561–581, 1999  相似文献   

2.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   

3.
Machine maintenance is modeled in the setting of a single‐server queue. Machine deterioration corresponds to slower service rates and failure. This leads to higher congestion and an increase in customer holding costs. The decision‐maker decides when to perform maintenance, which may be done pre‐emptively; before catastrophic failures. Similar to classic maintenance control models, the information available to the decision‐maker includes the state of the server. Unlike classic models, the information also includes the number of customers in queue. Considered are both a repair model and a replacement model. In the repair model, with random replacement times, fixed costs are assumed to be constant in the server state. In the replacement model, both constant and variable fixed costs are considered. It is shown in general that the optimal maintenance policies have switching curve structure that is monotone in the server state. However, the switching curve policies for the repair model are not always monotone in the number of customers in the queue. Numerical examples and two heuristics are also presented. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   

5.
The model considered in this paper involves a tandem queue consisting of a sequence of two waiting lines. The main feature of our model is blocking, i.e., as soon as the second waiting line reaches a certain upper limit, the first line is blocked. The input of units to the tandem queue is the MAP (Markovian arrival process), and service requirements are of phase type. Our objective is to study the sojourn time distribution under the first‐come‐first‐serve discipline by analyzing the sojourn time through times until absorption in appropriately defined quasi‐birth‐and‐death processes and continuous‐time Markov chains. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

6.
In this study we deal with the determination of optimal service rate in an M/M/1 queue. The arrival rate is unknown and assumed to be a random variable with a known distribution function. Holding and operating costs are considered and service rate is determined to minimize total expected discounted costs for infinite horizon. The effects of the arrival rate's distribution properties on the characteristics of the system are examined.  相似文献   

7.
This paper deals with the stationary analysis of the finite, single server queue in discrete time. The following stntionary distributions and other quantities of practical interest are investigated: (1) the joint density of the queue length and the residual service time, (2) the queue length distribution and its mean, (3) the distribution of the residual service time and its mean, (4) the distribution and the expected value of the number of customers lost per unit of time due to saturation of the waiting capacity, (5) the distribution and the mean of the waiting time, (6) the asymptotic distribution of the queue length following departures The latter distribution is particularly noteworthy, in view of the substantial difference which exists, in general, between the distributions of the queue lengths at arbitrary points of time and those immediately following departures.  相似文献   

8.
We consider a single‐queue with exhaustive or gated time‐limited services and server vacations, in which the length of each service period at the queue is controlled by a timer, i.e., the server serves customers until the timer expires or the queue becomes empty, whichever occurs first, and then takes vacations. The customer whose service is interrupted due to the timer expiration may be attended according to nonpreemptive or preemptive service disciplines. For the M/G/1 exhaustive/gated time‐limited service queueing system with an exponential timer and four typical preemptive/nonpreemptive service disciplines, we derive the Laplace—Stieltjes transforms and the moment formulas for waiting times and sojourn times through a unified approach, and provide some new results for these time‐limited service disciplines. © John Wiley & Sons, Inc. Naval Research Logistics 48: 638–651, 2001.  相似文献   

9.
In this article, we analyze a discrete‐time queue that is motivated from studying hospital inpatient flow management, where the customer count process captures the midnight inpatient census. The stationary distribution of the customer count has no explicit form and is difficult to compute in certain parameter regimes. Using the Stein's method framework, we identify a continuous random variable to approximate the steady‐state customer count. The continuous random variable corresponds to the stationary distribution of a diffusion process with state‐dependent diffusion coefficients. We characterize the error bounds of this approximation under a variety of system load conditions—from lightly loaded to heavily loaded. We also identify the critical role that the service rate plays in the convergence rate of the error bounds. We perform extensive numerical experiments to support the theoretical findings and to demonstrate the approximation quality. In particular, we show that our approximation performs better than those based on constant diffusion coefficients when the number of servers is small, which is relevant to decision making in a single hospital ward.  相似文献   

10.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

11.
首先将战术装备维修保障过程描述为M/M/c/k混合规则的排队过程,其损坏装备到达服从相互独立的泊松分布,维修时间服从相互独立的指数分布。同时考虑系统的到达率和维修率随系统中装备数量的变化,重要战损装备等待维修时的不耐烦性以及重要装备对一般装备的强占性优先权情况,结合战术装备维修保障系统的结构和规模,建立战术装备维修保障M/M/3/12排队模型。列出模型的平衡方程,采用矩阵的分析方法得到重要装备和一般装备的稳态分布表达式,并以队长为指标进行了系统性能的计算。  相似文献   

12.
讨论的排队模型 ,放宽了GI/G/1系统中“服务时间独立同分布”的限制 ,只要求各服务时间相互独立 ,因而较GI/G/1排队模型能更合理地拟合实际问题 .在此较宽的条件下 ,利用补充变量的方法 ,求得了该排队系统队长的瞬时分布  相似文献   

13.
The purpose of this paper is to explore an extension of the output discipline for the Poisson input, general output, single channel, first-come, first-served queueing system. The service time parameter, μ, is instead considered a random variable, M. In other words, the service time random variable, T, is to be conditioned by a parameter random variable, M. Therefore, if the distribution function of M is denoted by FM(μ) and the known conditional service time distribution as B(t |μ), then the unconditional service distribution is given by B(t) = Pr {T ≤ t}. = ∫-∞ B(t |μ) dFM(μ). Results are obtained that characterize queue size and waiting time using the imbedded Markov chain approach. Expressions are derived for the expected queue length and Laplace-Stieltjes transforms of the steady-state waiting time when conditional service times are exponential. More specific results are found for three special distributions of M: (1) uniform on [1.2]; (2) two-point; and (3) gamma.  相似文献   

14.
Most operating systems for large computing facilities involve service disciplines which base, to some extent, the sequencing of object program executions on the amount of running time they require. It is the object of this paper to study mathematical models of such service disciplines applicable to both batch and time-shared processing systems. In particular, Markov queueing models are defined and analyzed for round-robin and foreground-background service disciplines. With the round-robin discipline, the service facility processes each program or job for a maximum of q seconds; if the program's service is completed during this quantum, it leaves the system, otherwise it returns to the end of the waiting line to await another quantum of service. With the foreground-background discipline each new arrival joins the end of the foreground queue and awaits a single quantum of service. If it requires more it is subsequently placed at the end of the background queue which is allocated service only when the foreground queue is empty. The analysis focuses on the efficiency of the above systems by assuming a swap or set-up time (overhead cost) associated with the switching of programs on and off the processor. The analysis leads to generating functions for the equilibrium queue length probabilities, the moments of this latter distribution, and measures of mean waiting times. The paper concludes with a discussion of the results along with several examples.  相似文献   

15.
This paper uses the holding time model (HTM) method to derive an approximate analytic formula for the calculation of the mean throughput of a K-station production line with no buffers between any two successive stations. Service times follow the two-stage Coxian (C2) distribution at all stations. The paper provides a formula that relates the third moment of the service completion (or virtual service) time with the respective parameters of the service time, the repair time and the time to breakdown (the latter is assumed to follow the exponential distribution). In this way, it concludes that under certain conditions the two-stage Coxian distribution can be used to approximate any general distribution matching the first three moments of the service completion time distribution. The mean holding times (consisting of the service and blocking periods) of all stations of the line are obtained in an analytical form. Numerical results are provided for the mean throughput of lines with up to 20 stations. These results are shown to have a good accuracy compared against results obtained from the Markovian state method (for short lines) and results from simulation (for longer lines). © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 669–685, 1998  相似文献   

16.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

17.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

18.
The busy period, busy cycle, and the numbers of customers served and lost therein, of the G/M/m queue with balking is studied via the embedded Markov chain approach. It is shown that the expectations of the two discrete variables give the loss probability. For the special case G/M/1/N a closed expression in terms of contour integrals is obtained for the Laplace transform of these four variables. This yields as a byproduct the LIFO waiting time distribution for the G/M/m/N queue. The waiting time under random order service for this queue is also studied.  相似文献   

19.
If the number of customers in a queueing system as a function of time has a proper limiting steady‐state distribution, then that steady‐state distribution can be estimated from system data by fitting a general stationary birth‐and‐death (BD) process model to the data and solving for its steady‐state distribution using the familiar local‐balance steady‐state equation for BD processes, even if the actual process is not a BD process. We show that this indirect way to estimate the steady‐state distribution can be effective for periodic queues, because the fitted birth and death rates often have special structure allowing them to be estimated efficiently by fitting parametric functions with only a few parameters, for example, 2. We focus on the multiserver Mt/GI/s queue with a nonhomogeneous Poisson arrival process having a periodic time‐varying rate function. We establish properties of its steady‐state distribution and fitted BD rates. We also show that the fitted BD rates can be a useful diagnostic tool to see if an Mt/GI/s model is appropriate for a complex queueing system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 664–685, 2015  相似文献   

20.
In some queueing systems the total service capacity utilized at any given time is a variable under the control of a decision maker. Management doctrines are examined which prescribe the actual service capacity as a function of the queue length and the recent history of the system. Steady state probabilities, expected queue lengths and frequencies of change in capacity are evaluated for a wide class of possible control schemes. Optimization procedures are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号