首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After first formulating the problem of the Marine Environmental Protection program of the Coast Guard as a multiple-objective linear program, we investigate the applicability and limitations of goal programming. We point out how the preemptive goal-programming approach is incompatible with utility preferences. Then we observe the tendency of optimal solutions for standard linear goal programs to occur at extreme points. We also note problems of more general approaches, such as dealing with additively separable approximations to preferences.  相似文献   

2.
Traditional methods of due-date assignment presented in the literature and used in practice generally assume cost-of-earliness and cost-of-tardiness functions that may bear little resemblance to true costs. For example, practitioners using ordinary least-squares (OLS) regression implicitly minimize a quadratic cost function symmetric about the due date, thereby assigning equal second-order costs to early completion and tardy behavior. In this article the consequences of such assumptions are pointed out, and a cost-based assignment scheme is suggested whereby the cost of early completion may differ in form and/or degree from the cost of tardiness. Two classical approaches (OLS regression and mathematical programming) as well as a neural-network methodology for solving this problem are developed and compared on three hypothetical shops using simulation techniques. It is found for the cases considered that: (a) implicitly ignoring cost-based assignments can be very costly; (b) simpler regression-based rules cited in the literature are very poor cost performers; (c) if the earliness and tardiness cost functions are both linear, linear programming and neural networks are the methodologies of choice; and (d) if the form of the earliness cost function differs from that of the tardiness cost function, neural networks are statistically superior performers. Finally, it is noted that neural networks can be used for a wide range of cost functions, whereas the other methodologies are significantly more restricted. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
This article is concerned with the minimization of the maximal value of a set of linear functions subject to linear constraints. It is well known that this problem can be transformed into a standard linear programming problem by introducing an additional variable. In case index sets of nonzero coefficients of the variables contained in each function are mutually exclusive, the constraints of the associated LP problem exhibit the almost-GUB structure. We devised a technique which reduces the number of arithmetic operations by exploiting this special structure. Computational results are also presented, which indicates that our method is more efficient than the ordinary revised simplex method.  相似文献   

4.
There exists a class of decision problems for which: (1) models of input-output response functions are not available in a closed-form, functional representation; (2) informational costs associated with learning about the response function are significant. For these problems, combining identification with optimization using mathematical programming is potentially attractive. Three approaches to the identification-optimization problem are proposed: an outer-linearized approximation using relaxation (OLR); an inner-linearized approximation using restriction (ILR); and a sequential combination of inner- and outer-linearized subproblems (SIO). Algorithms based on each approach are developed and computational experience reported.  相似文献   

5.
A duality theory is developed for mathematical programs with strictly quasi-concave objective functions to be maximized over a convex set. This work broadens the duality theory of Rockafellar and Peterson from concave (convex) functions to quasi-concave (quasi-convex) functions. The theory is closely related to the utility theory in economics. An example from economic planning is examined and the solution to the dual program is shown to have the properties normally associated with market prices.  相似文献   

6.
Classifying items into distinct groupings is fundamental in scientific inquiry. The objective of cluster analysis is to assign n objects to up to K mutually exclusive groups while minimizing some measure of dissimilarity among the items. Few mathematical programming approaches have been applied to these problems. Most clustering methods to date only consider lowering the amount of interaction between each observation and the group mean or median. Clustering used in information systems development to determine groupings of modules requires a model that will account for the total group interaction. We formulate a mixed-integer programming model for optimal clustering based upon scaled distance measures to account for this total group interaction. We discuss an efficient, implicit enumeration algorithm along with some implementation issues, a method for computing tight bounds for each node in the solution tree, and a small example. A computational example problem, taken from the computer-assisted process organization (CAPO) literature, is presented. Detailed computational results indicate that the method is effective for solving this type of cluster analysis problem.  相似文献   

7.
Multiple Objectives Optimization is much seen in combination with linear functions and even with linear programming, together with an adding of the objectives by using weights. With distance functions, normalization instead of weights is used. It is also possible that together with an additive direct influence of the objectives on the utility function a mutual utility of the objectives exists under the form of a multiplicative representation. A critical comment is brought on some representations of this kind. A full‐multiplicative form may offer other opportunities, which will be discussed at length in an effort to exclude weights and normalization. This theoretical approach is followed by an application for arms procurement. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 327–340, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10014  相似文献   

8.
Machine learning algorithms that incorporate misclassification costs have recently received considerable attention. In this paper, we use the principles of evolution to develop and test an evolutionary/genetic algorithm (GA)‐based neural approach that incorporates asymmetric Type I and Type II error costs. Using simulated, real‐world medical and financial data sets, we compare the results of the proposed approach with other statistical, mathematical, and machine learning approaches, which include statistical linear discriminant analysis, back‐propagation artificial neural network, integrated cost preference‐based linear mathematical programming‐based minimize squared deviations, linear integrated cost preference‐based GA, decision trees (C 5.0, and CART), and inexpensive classification with expensive tests algorithm. Our results indicate that the proposed approach incorporating asymmetric error costs results in equal or lower holdout sample misclassification cost when compared with the other statistical, mathematical, and machine learning misclassification cost‐minimizing approaches. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

9.
The fixed charge problem is a mixed integer mathematical programming problem which has proved difficult to solve in the past. In this paper we look at a special case of that problem and show that this case can be solved by formulating it as a set-covering problem. We then use a branch-and-bound integer programming code to solve test fixed charge problems using the setcovering formulation. Even without a special purpose set-covering algorithm, the results from this solution procedure are dramatically better than those obtained using other solution procedures.  相似文献   

10.
In this article we present a novel technique for deriving the convex envelope of certain nonconvex fixed-charge functions of the type that arise in several related applications that have been considered in the literature. One common attribute of these problems is that they involve choosing levels for the undertaking of several activities. Two or more activities share a common resource, and a fixed charge is incurred when any of these activities is undertaken at a positive level. We consider nonconvex programming formulations for these problems in which the fixed charges are expressed in the form of concave functions. With the use of the developed convex envelope results, we show that the convex envelope relaxations of the nonconvex formulations lead to the linear programming relaxations of the strong IP/MIP formulations of these problems. Moreover, our technique for deriving convex envelopes offers a useful construct that could be exploited in other related contexts as well. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

12.
Classification models, whether generated by statistical techniques or mathematical programming (MP) discriminant analysis methods, are often simplified by ad hoc formation of dichotomous categorical variables from the original variables with, for example, a dichotomous variable taking value 1 if the original variable is above a threshold level and 0 otherwise. In this paper an MP discriminant analysis method is developed for forming dichotomous categorical variables in problems with discriminant functions that are monotone in the original variables. For each of the original variables from which dichotomous variables may be formed, a set of possible threshold levels for dichotomous variable formation is defined. An MP model is then used to determine both the threshold level for forming each dichotomous variable and the associated discriminant function coefficient. The proposed MP approach is applied to a published problem and a number of simulated problem sets. It is shown that the discriminant functions in dichotomous categorical variables generated by this new MP approach can in some cases outperform the functions generated by standard MP discriminant analysis models using the original variables. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

13.
We examine the problem of a gambler interested in maximizing the expected value of a convex utility function of his fortune after n plays of a game. We allow any probability distribution to rule the outcome of each play, and this distribution may change from play to play according to a Markov process. We present results regarding the existence of an optimal policy and its structural dependence on the gambler's fortune. The well-known results of Bellman and Kalaba for exponential and logarithmic utility functions and coin-tossing games are generalized. We also examine the situation of general stale spaces and show that the same structural results hold.  相似文献   

14.
We propose and justify the proposition that finding truly global representations of the efficient sets of multiple objective mathematical programs is a worthy goal. We summarize the essential elements of a general global shooting procedure that seeks such representations. This procedure illustrates the potential benefits to be gained from procedures for globally representing efficient sets in multiple objective mathematical programming. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Each year, the U.S. Army procures billions of dollars worth of weapons and equipment. The process of deciding what to buy, when to buy, and in what quantities is extremely complex, requiring extensive analysis. Two techniques used in this analysis are mathematical programming and cost estimation. Although they are related through constraints on available procurement funds, the use of nonlinear cost learning curves, which better represent system costs as a function of quantity produced, have not been incorporated into the mathematical programming formulations that compute the quantities of items to be procured. As a result, the solutions obtained could be either suboptimal, or even infeasible with respect to budgetary limitations. In this paper we present a piecewise linear approximation of the learning curve costs for a more accurate portrayal of budgetary constraints used in a mixed integer linear programming for acquisition strategy optimization. In addition, implementation issues are discussed, and performance results are given. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 255–271, 1999  相似文献   

16.
We study the integer multiple criteria knapsack problem and propose dynamic‐programming‐based approaches to finding all the nondominated solutions. Different and more complex models are discussed, including the binary multiple criteria knapsack problem, problems with more than one constraint, and multiperiod as well as time‐dependent models. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 57–76, 2000  相似文献   

17.
The historic max-min problem is examined as a discrete process rather than in its more usual continuous mode. Since the practical application of the max-min model usually involves discrete objects such as ballistic missiles, the discrete formulation of the problem seems quite appropriate. This paper uses an illegal modification to the dynamic programming process to obtain an upper bound to the max-min value. Then a second but legal application of dynamic programming to the minimization part of the problem for a fixed maximizing vector will give a lower bound to the max-min value. Concepts of optimal stopping rules may be applied to indicate when sufficiently near optimal solutions have been obtained.  相似文献   

18.
介绍了VB在多媒体编程上的优势;说明了用VB实现控制系统原理模拟的各种多媒体方法:信号流、声响效果的实现和控制;各种仪表、信号波形的动画显示;各元件及系统数学模型的建立;控制原理的实现过程等,并给出了实现的一般框图.  相似文献   

19.
Express package carrier networks have large numbers of heavily‐interconnected and tightly‐constrained resources, making the planning process difficult. A decision made in one area of the network can impact virtually any other area as well. Mathematical programming therefore seems like a logical approach to solving such problems, taking into account all of these interactions. The tight time windows and nonlinear cost functions of these systems, however, often make traditional approaches such as multicommodity flow formulations intractable. This is due to both the large number of constraints and the weakness of the linear programming (LP) relaxations arising in these formulations. To overcome these obstacles, we propose a model in which variables represent combinations of loads and their corresponding routings, rather than assigning individual loads to individual arcs in the network. In doing so, we incorporate much of the problem complexity implicitly within the variable definition, rather than explicitly within the constraints. This approach enables us to linearize the cost structure, strengthen the LP relaxation of the formulation, and drastically reduce the number of constraints. In addition, it greatly facilitates the inclusion of other stages of the (typically decomposed) planning process. We show how the use of templates, in place of traditional delayed column generation, allows us to identify promising candidate variables, ensuring high‐quality solutions in reasonable run times while also enabling the inclusion of additional operational considerations that would be difficult if not impossible to capture in a traditional approach. Computational results are presented using data from a major international package carrier. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
A mathematical formulation of an optimization model designed to select projects for inclusion in an R&D portfolio, subject to a wide variety of constraints (e.g., capital, headcount, strategic intent, etc.), is presented. The model is similar to others that have previously appeared in the literature and is in the form of a mixed integer programming (MIP) problem known as the multidimensional knapsack problem. Exact solution of such problems is generally difficult, but can be accomplished in reasonable time using specialized algorithms. The main contribution of this paper is an examination of two important issues related to formulation of project selection models such as the one presented here. If partial funding and implementation of projects is allowed, the resulting formulation is a linear programming (LP) problem which can be solved quite easily. Several plausible assumptions about how partial funding impacts project value are presented. In general, our examples suggest that the problem might best be formulated as a nonlinear programming (NLP) problem, but that there is a need for further research to determine an appropriate expression for the value of a partially funded project. In light of that gap in the current body of knowledge and for practical reasons, the LP relaxation of this model is preferred. The LP relaxation can be implemented in a spreadsheet (even for relatively large problems) and gives reasonable results when applied to a test problem based on GM's R&D project selection process. There has been much discussion in the literature on the topic of assigning a quantitative measure of value to each project. Although many alternatives are suggested, no one way is universally accepted as the preferred way. There does seem to be general agreement that all of the proposed methods are subject to considerable uncertainty. A systematic way to examine the sensitivity of project selection decisions to variations in the measure of value is developed. It is shown that the solution for the illustrative problem is reasonably robust to rather large variations in the measure of value. We cannot, however, conclude that this would be the case in general. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 18–40, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号