首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to advances in automated manufacturing systems and automatic inspection equipment, complete inspection (screening) has drawn increased attention recently and has become a widespread practice. Screening can be based on the performance variable of interest or on a variable which is correlated with the performance variable. Using a correlated variable as the screening variable is attractive when the inspection on the performance variable is destructive or costly. The purpose of this article is to illustrate both theoretically and empirically when a correlated variable rather than the performance variable should be used as the screening variable when inspection error is present.  相似文献   

2.
Economic screening procedures using a correlated variable are developed for selecting markets in situations when there are several markets with different profit/ cost structures. It is assumed that the performance variable and the screening variable are jointly normally distributed. Profit models are constructed which involve three profit/cost components: profit from a conforming item, cost from an accepted nonconforming item, and screening inspection cost. Methods of finding the optimal screening procedures are presented and numerical examples are given.  相似文献   

3.
Economic screening procedures based on a continuous screening variable X in place of a dichotomous performance variable T are presented. Optimal critical values on the screening variable minimizing the expected cost are obtained for two models; it is assumed that X given T is normally distributed in normal model and P[T = 1|X] is a logistic function of X in the logistic model, and that costs are incurred by screening inspection and misclassification errors. Cases where some parameters are unknown are also considered.  相似文献   

4.
Bayesian models for multiattribute acceptance sampling have been developed under the assumption that sampling inspection is carried to completion. A Bayesian multiattribute model for stepwise sampling inspection is proposed, whereby sampling inspection is terminated as soon as the disposition of the inspection lot is determined. An iterative solution procedure is developed for obtaining optimal or near-optimal multiattribute acceptance sampling plans under stepwise sampling inspection. The effect of stepwise sampling inspection on the characteristics of an optimal sampling plan is investigated. It is shown that stepwise sampling inspection achieves a sampling plan with lower total expected cost than complete sampling inspection. In addition, it is shown that the sequence of attributes in a stepwise sampling inspection substantially affects the sampling plan and resultant expected cost. The proposed methodology is used to evaluate various heuristics which may be used to determine the sequence of attributes in a stepwise inspection procedure.  相似文献   

5.
An economic two-stage screening procedure based on a dichotomous performance variable T and a continuous screening variable X is proposed. X is measured first to decide whether an item should be accepted, rejected, or additional observations should be taken. If no terminal decision is reached, T is then observed to classify the undecided items. Two models are considered; (i) the logistic model, where P(T = 1|X = x) is assumed to be a logistic function of x, and (ii) the normal model, where X given T is assumed to be normally distributed. A simple economic model based on inspection and misclassification costs is constructed. Optimal cutoff values on the screening variable are obtained by minimizing the expected cost subject to the constraint that the average outgoing quality attains a pre-specified level. Solutions are provided for both known-parameter and unknown-parameter cases. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
An economic sequential screening procedure is considered for limited failure populations in which defective items fail soon after they are put in operation and nondefective ones never fail during the technical life of the items. A cost model is constructed that involves screening test cost and external failure cost. A sequential scheme that minimizes the expected cost is derived from the solution of a dynamic programming formulation and the optimal decision at each stage is obtained in a closed form. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The traditional approach to economic design of control charts is based on the assumption that a process is monitored using only a performance variable. If, however, the performance variable is costly to measure and a less expensive surrogate variable is available, the process may be more efficiently controlled by using both performance and surrogate variables. In this article we propose a model for economic design of a two-stage control chart which uses a highly correlated surrogate variable together with a performance variable. The process is assumed to be monitored by the surrogate variable until it signals out-of-control behavior, then by the performance variable until it signals out-of-control behavior or maintains in-control signals for a prespecified amount of time, and the two variables are used in alternating fashion. An algorithm based on the direct search method of Hooke and Jeeves [6] is used to find the optimum values of design parameters. The proposed model is applied to the end-closure welding process for nuclear fuel to compute the amount of reduction in cost compared with the current control procedure. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 958–977, 1999  相似文献   

8.
应用交互多模(IMM)算法跟踪低空目标   总被引:1,自引:0,他引:1  
雷达跟踪低空目标时,由于多路径传播的影响,目标俯仰角的测量会出现测量误差.并且由多路径传播引起的测量噪声方差较大,在时间上具有相关性.应用交互多模(IMM)算法来提高跟踪低空目标的性能,并且提出了一种去相关的滤波方法来克服多径误差相关性的影响,最后给出了计算机仿真的滤波结果.  相似文献   

9.
This paper presents a procedure akin to dynamic programming for designing optimal acceptance sampling plans for item-by-item inspection. Using a Bayesian procedure, a prior distribution is specified, and a suitable cost model is employed depicting the cost of sampling, accepting or rejecting the lot. An algorithm is supplied which is digital computer oriented.  相似文献   

10.
An optimal schedule for checking an equipment subject to failure which can be detected by inspection only, is derived. Increasing failure rate and one percentile specify the otherwise unknown life distribution. Dynamic programming methodology yields the solution which minimizes the maximum expected cost. Numerical examples are presented and compared with models employing differing amounts of knowledge.  相似文献   

11.
This article studies a firm that procures a product from a supplier. The quality of each product unit is measured by a continuous variable that follows a normal distribution and is correlated within a batch. The firm conducts an inspection and pays the supplier only if the product batch passes the inspection. The inspection not only serves the purpose of preventing a bad batch from reaching customers but also offers the supplier an incentive to improve product quality. The firm determines the acceptance sampling plan, and the supplier determines the quality effort level in either a simultaneous game or a Stackelberg leadership game, in which both parties share inspection cost and recall loss caused by low product quality. In the simultaneous game, we identify the Nash equilibrium form, provide sufficient conditions that guarantee the existence of a pure strategy Nash equilibrium, and find parameter settings under which the decentralized and centralized supply chains achieve the same outcome. By numerical experiments, we show that the firm's acceptance sampling plan and the supplier's quality effort level are sensitive to both the recall loss sharing ratio and the game format (i.e., the precommitment assumption of the inspection policy). © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

12.
We present a group testing model for items characterized by marker random variables. An item is defined to be good (defective) if its marker is below (above) a given threshold. The items can be tested in groups; the goal is to obtain a prespecified number of good items by testing them in optimally sized groups. Besides this group size, the controller has to select a threshold value for the group marker sums, and the target number of groups which by the tests are classified to consist only of good items. These decision variables have to be chosen so as to minimize a cost function, which is a linear combination of the expected number of group tests and an expected penalty for missing the desired number of good items, subject to constraints on the probabilities of misclassifications. We treat two models of this kind: the first one is based on an infinite population size, whereas the second one deals with the case of a finite number of available items. All performance measures are derived in closed form; approximations are also given. Furthermore, we prove monotonicity properties of the components of the objective function and of the constraints. In several examples, we study (i) the dependence of the cost function on the decision variables and (ii) the dependence of the optimal values of the decision variables (group size, group marker threshold, and stopping rule for groups classified as clean) and of the target functionals (optimal expected number of tests, optimal expected penalty, and minimal expected cost) on the system parameters.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

13.
This article develops a model for determining the optimal inspection schedule for a system which deteriorates according to a semi-Markov process that progresses through three states: good, defective, and bad. A binary test is used, and false positives may occur. A true positive results in an action that reduces the likelihood of entering the bad state, but at most one such corrective action can occur during the lifetime of the system. Costs are associated with each inspection, each false positive, the corrective action, and the entrance into the bad state. Dynamic programming is used to compute the minimum expected cost, which is a function of the age of the system. The optimal inspection schedule is readily derived from this value function. Computational examples are provided. This model is appropriate for medical screening or for a mission where there is only one spare part.  相似文献   

14.
研究了基于故障风险的检测与维修策略,运用威布尔比例风险模型建立系统故障率与工作时间及所处状态的关系。分析了两类基于间接状态信息维修决策的风险,建立了系统检测及维修策略的决策树,通过比较检测与不检测情况下的期望费用确定最优的检测间隔。算例表明,所提出的方法能够有效控制系统运行风险,降低系统运行费用。  相似文献   

15.
An EMQ model with a production process subject to random deterioration is considered. The process can be monitored through inspections, and both the lot size and the inspection schedule are subject to control. The “in-control” periods are assumed to be generally distributed and the inspections are imperfect, i.e., the true state of the process is not necessarily revealed through an inspection. The objective is the joint determination of the lot size and the inspection schedule, minimizing the long-run expected average cost per unit time. Both discrete and continuous cases are examined. A dynamic programming formulation is considered in the case where the inspections can be performed only at discrete times, which is typical for the parts industry. In the continuous case, an optimum inspection schedule is obtained for a given production time and given number of inspections by solving a nonlinear programming problem. A two-dimensional search procedure can be used to find the optimal policy. In the exponential case, the structure of the optimal inspection policy is established using Lagrange's method, and it is shown that the optimal inspection times can be found by solving a nonlinear equation. Numerical studies indicate that the optimal policy performs much better than the optimal policy with periodic inspections considered previously in the literature. The case of perfect inspections is discussed, and an extension of the results obtained previously in the literature is presented. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 165–186, 1998  相似文献   

16.
The “gold‐mining” decision problem is concerned with the efficient utilization of a delicate mining equipment working in a number of different mines. Richard Bellman was the first to consider this type of a problem. The solution found by Bellman for the finite‐horizon, continuous‐time version of the problem with two mines is not overly realistic since he assumed that fractional parts of the same mining equipment could be used in different mines and this fraction could change instantaneously. In this paper, we provide some extensions to this model in order to produce more operational and realistic solutions. Our first model is concerned with developing an operational policy where the equipment may be switched from one mine to the other at most once during a finite horizon. In the next extension we incorporate a cost component in the objective function and assume that the horizon length is not fixed but it is the second decision variable. Structural properties of the optimal solutions are obtained using nonlinear programming. Each model and its solution is illustrated with a numerical example. The models developed here may have potential applications in other areas including production of items requiring the same machine or choosing a sequence of activities requiring the same resource. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 186–203, 2002; DOI 10.1002/nav.10008  相似文献   

17.
The problem of determining the optimal inspection epoch is studied for reliability systems in which N components operate in parallel. Lifetime distribution is arbitrary, but known. The optimization is carried with respect to two cost factors: the cost of inspecting a component and the cost of failure. The inspection epochs are determined so that the expected cost of the whole system per time unit per cycle will be minimized. The optimization process depends in the general case on the whole failure history of the system. This dependence is characterized. The cases of Weibull lifetime distributions are elaborated and illustrated numerically. The characteristics of the optimal inspection intervals are studied theoretically.  相似文献   

18.
We develop a risk‐sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and decided ex‐post. Under constant absolute risk aversion, operating profits are the closed‐form solution to a nontrivial linear program, thus characterizing the sizing decision via a single first‐order condition. This solution has several desired features, including the optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet‐implementable approximations to the optimal solution, which make this model a practical capacity planning tool.© 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

19.
从武器装备采办的理论需求出发,以博弈论为理论工具,对武器装备采办过程中的生产成本控制问题进行了分析;建立了基于激励的生产成本控制模型,并对成本控制模型的特点进行了分析和解释;针对军方在激励合同执行过程中有可能出现的2类错误,对成本控制模型进行了优化。在非对称信息条件下,优化后的成本控制模型不但能有效减少2类错误的发生,而且可提高军方装备采办效用,减少代理方合同风险。  相似文献   

20.
This article deals with several items, including theoretical and applied results. Specific topics include (1) a discrete, economically based, attributes acceptance sampling model and its adaptations, (2) relevant costs, (3) relevant prior distributions, (4) comparison of single- and double-sampling results, and (5) reasons for marginal implementation success following excellent implementation efforts. The basic model used is one developed by Guthrie and Johns; adaptations include provisions for fixed costs as well as modifications to permit double sampling. Optimization is exact, rather than approximate. Costs incorporated into the model are for sampling inspection, lot acceptance, and lot rejection. For each of these three categories a fixed cost is included as well as two variable costs, one for each item and the other for each defective item. Discrete prior distributions for the number of defectives in a lot are used exclusively. These include the mixed binomial and Polya distributions. Single- and double-sampling results are compared. Double sampling regularly performs at only slightly lower cost per lot than single sampling. Also, some cost and prior distribution sensitivity results are presented. Comments are provided regarding actual implementation experiences in industry. Practical deficiencies with the Bayesian approach are described, and a recommendation for future research is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号