首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   

2.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   

3.
Given a set of jobs, a processing time and a weight for each job, several parallel and identical machines, and a common due date that is not too early to constrain the scheduling decision, we want to find an optimal job schedule so as to minimize the maximum weighted absolute lateness. We show that this problem is NP-complete even for the single-machine case, and is strongly NP-complete for the general case. We present a polynomial time heuristic for this problem and analyze its worst-case performance. Empirical testing of the heuristic is reported, and the results suggest that the performance is asymptotically optimal as the number of jobs tends to infinity. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
We show that the deterministic nonpreemptive scheduling problem with earliness and tardiness penalties can be solved in polynomial time for certain forms of an objective function provided that a certain optimization problem can be solved. We give instances where this problem has a solution and show that this generalizes several results from the literature. These results do not require symmetric penalization and the penalty functions need only be lower semicontinuous.  相似文献   

5.
Given a positive integer R and a weight for each vertex in a graph, the maximum-weight connected graph (MCG) problem is to find a connected subgraph with R vertices that maximizes the sum of the weights. The MCG problem is strongly NP-complete, and we study a special case of it: the constrained MCG (CMCG) problem, which is the MCG problem with a constraint of having a predetermined vertex included in the solution. We first show that the Steiner tree problem is a special case of the CMCG problem. Then we present three optimization algorithms for the CMCG problem. The first two algorithms deal with special graphs (tree and layered graphs) and employ different dynamic programming techniques, solving the CMCG problem in polynomial times. The third one deals with a general graph and uses a variant of the Balas additive method with an imbedded connectivity test and a pruning method. We also present a heuristic algorithm for the CMCG problem with a general graph and its bound analysis. We combine the two algorithms, heuristic and optimization, and present a practical solution method to the CMCG problem. Computational results are reported and future research issues are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
We study the quadratic bottleneck problem (QBP) which generalizes several well‐studied optimization problems. A weak duality theorem is introduced along with a general purpose algorithm to solve QBP. An example is given which illustrates duality gap in the weak duality theorem. It is shown that the special case of QBP where feasible solutions are subsets of a finite set having the same cardinality is NP‐hard. Likewise the quadratic bottleneck spanning tree problem (QBST) is shown to be NP‐hard on a bipartite graph even if the cost function takes 0–1 values only. Two lower bounds for QBST are derived and compared. Efficient heuristic algorithms are presented for QBST along with computational results. When the cost function is decomposable, we show that QBP is solvable in polynomial time whenever an associated linear bottleneck problem can be solved in polynomial time. As a consequence, QBP with feasible solutions form spanning trees, s‐t paths, matchings, etc., of a graph are solvable in polynomial time with a decomposable cost function. We also show that QBP can be formulated as a quadratic minsum problem and establish some asymptotic results. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

7.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

8.
Consider the conditional covering problem on an undirected graph, where each node represents a site that must be covered by a facility, and facilities may only be established at these nodes. Each facility can cover all sites that lie within some common covering radius, except the site at which it is located. Although this problem is difficult to solve on general graphs, there exist special structures on which the problem is easily solvable. In this paper, we consider the special case in which the graph is a simple path. For the case in which facility location costs do not vary based on the site, we derive characteristics of the problem that lead to a linear‐time shortest path algorithm for solving the problem. When the facility location costs vary according to the site, we provide a more complex, but still polynomial‐time, dynamic programming algorithm to find the optimal solution. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
Since the introduction of flexible manufacturing systems, researchers have investigated various planning and scheduling problems faced by the users of such systems. Several of these problems are not encountered in more classical production settings, and so‐called tool management problems appear to be among the more fundamental ones of these problems. Most tool management problems are hard to solve, so that numerous approximate solution techniques have been proposed to tackle them. In this paper, we investigate the quality of such algorithms by means of worst‐case analysis. We consider several polynomial‐time approximation algorithms described in the literature, and we show that all these algorithms exhibit rather poor worst‐case behavior. We also study the complexity of solving tool management problems approximately. In this respect, we investigate the interrelationships among tool management problems, as well as their relationships with other well‐known combinatorial problems such as the maximum clique problem or the set covering problem, and we prove several negative results on the approximability of various tool management problems. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 445–462, 1999  相似文献   

10.
This article examines the problem of simultaneously assigning a common due date to a set of independent jobs and scheduling them on identical parallel machines in such a way that the costs associated with the due date and with the earliness or tardiness of the jobs are minimized. We establish that, for certain values of the due-date cost, an optimal schedule for this problem is also optimal for an early/tardy scheduling problem studied by Emmons. We discuss the solution properties for the two problems, and show that both problems are NP-hard even for two machines. We further show that these problems become strongly NP-hard if the number of machines is allowed to be arbitrary. We provide a dynamic programming solution for the problems, the complexity of which indicates that the problems can be solved in pseudopolynomial time as long as the number of machines remains fixed. Finally, we present the results of a limited computational study. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
This article presents a new approach to solve the problem of coordinating the overhaul scheduling of several nonidentical production units. For each production unit, we assume that the operating cost is an n-order polynomial function of the time elapsed since its previous overhaul. We develop an efficient iterative algorithm that generates a near-optimal cyclic overhaul schedule. We also construct a simple algorithm for the case where the overhaul interval for each production unit and the cycle time are restricted to be power-of-two multiples of some base planning period. Finally, we provide a worst-case performance bound for the solution to the problem under the power-of-two restriction. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

13.
We study the problem of multimode scheduling tasks on dedicated processors, with the objective of minimizing the maximum completion time. Each task can be undertaken in one among a set of predefined alternative modes, where each mode specifies a required set of dedicated processors and a processing time. At any time each processor can be used by a single task at most. General precedence constraints exist among tasks, and task preemption is not allowed. The problem consists of assigning a mode and a starting time to each task, respecting processor and precedence constraints, to minimize the time required to complete all tasks. The problem is NP-hard in several particular cases. In previous works, we studied algorithms in which a solution was obtained by means of an iterative procedure that combines mode assignment and sequencing phases separately. In this paper, we present some new heuristics where the decision on the mode assignment is taken on the basis of a partial schedule. Then, for each task, the mode selection and the starting time are chosen simultaneously considering the current processor usage. Different lower bounds are derived from a mathematical formulation of the problem and from a graph representation of a particular relaxed version of the problem. Heuristic solutions and lower bounds are evaluated on randomly generated test problems. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 893–911, 1999  相似文献   

14.
This paper analyzes the Smith-heuristic for the single-machine scheduling problem where the objective is to minimize the total weighted completion time subject to the constraint that the tradiness for any job does not exceed a prespecified maximum allowable tardiness. We identify several cases of this problem for which the Smith-heuristic is guaranteed to lead to optimal solutions. We also provide a worst-case analysis of the Smith-heuristic; the analysis shows that the fractional increase in the objective function value for the Smith-heuristic from the optimal solution is unbounded in the worst case.  相似文献   

15.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph—a directed series‐parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series‐parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574–592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031  相似文献   

17.
This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concurrent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms for some cases of these problems and pseudo‐polynomial time algorithms for some problems that are NP‐hard in the ordinary sense. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011  相似文献   

18.
The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998  相似文献   

19.
In this paper we address the cyclic scheduling problem in flow lines. We develop a modeling framework and an integer programming formulation of the problem. We subsequently present exact and approximate solution procedures. The exact solution procedure is a branch-and-bound algorithm which uses Lagrangian and station-based relaxations of the integer programming formulation of the problem as the lower bounding method. Our heuristic procedures show a performance superior to the available ones in the literature. Finally, we address the stability issue in cyclic scheduling, demonstrate its relationship to the work-in-progress inventory control of a flow line, and present a very simple procedure to generate stable schedules in flow lines. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
In this article we consider a project scheduling problem where there are cash flows throughout the life of the project and where shorter activity durations can be attained by incurring greater direct costs. In particular, the objective of this problem is to determine the activity durations and a schedule of activity start times so that the net present value of cash flows is maximized. We formulate this problem as a mixed-integer nonlinear program which is amenable to solution using the generalized Benders decomposition technique developed by Geoffrion. We test the algorithm on 140 project scheduling problems, the largest of which contains 30 nodes and 64 activities. Our computational results are quite encouraging inasmuch as 123 of the 140 problems require less than 1 CPU second of solution time. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号