首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of warranties are analyzed. These are the free-replacement warranty, under which failed items are replaced free of charge until a specified total operating time has been achieved, and the pro rata warranty, under which items that fail prior to a specified time are replaced at pro rata cost to the buyer. Both the buyer's and seller's points of view are considered. The basis of the analysis is a comparison of warranted and unwarranted (otherwise identical) items with regard to long-run cost to the buyer and long-run profit to the seller. Application of the results requires knowledge of certain characteristics of the life distribution of the items in question. Parametric and nonparametric methods of estimation of these characteristics from incomplete data are discussed. Single and multiple failure-mode situations are considered. Some solutions to the problem are illustrated using incomplete data on failure times of an aircraft component.  相似文献   

2.
Because of the rapid growth in automated manufacturing systems, complete inspection (screening) becomes very attractive. Sophisticated automated inspection equipment can efficiently process a large number of items and produce consistent and accurate results. However, in many applications the performance variable of interest is expensive to measure even by using automated inspection equipment. One alternative to deal with this problem is to use another variable, which is correlated with the performance variable and relatively inexpensive to measure as the screening variable. Since a screening variable is not perfectly correlated with the performance variable, decision errors that reject good-quality items or accept poor-quality items may occur. To reduce these errors, we propose a two-stage screening procedure in which the first-stage screening is based on a screening variable and the second-stage screening is based on the performance variable. The second-stage screening is performed only on those items of which the disposition cannot clearly be determined by the result of first stage screening. Three losses are considered in the formulation of the model. The first loss is the cost of inspection, the second loss is the cost associated with the disposition of rejected items, and the third loss is incurred by imperfect quality of accepted items. The optimal solution is derived and compared to the single-stage screening procedures based on the screening variable and the performance variable. In addition, the sensitivity of the optimal screening procedure with respect to the correlation between the performance variable and the screening variable and the cost of inspecting the performance variable is discussed and demonstrated by numerical results.  相似文献   

3.
A mathematical model is formulated for determining the number of spare components to purchase when components stochastically fail according to a known life distribution function and there is a cost incurred when a component is replaced. Bounds are determined for the optimal inventory which indicate that the inclusion of the replacement cost lowers the optimal inventory. Since these bounds are no easier to calculate than the optimal spares level, the theory is specialized to components with exponentially distributed time to failure. Procedures are given for calculating the optimal spares level, and numerical examples are provided.  相似文献   

4.
The design of a system with many locations, each with many items which may fail while in use, is considered. When items fail, they require repair; the particular type of repair being governed by a probability distribution. As repairs may be lengthy, spares are kept on hand to replace failed items. System ineffectiveness is measured by expected weighted shortages over all items and locations, in steady state. This can be reduced by either having more spares or shorter expected repair times. Design consists of a provisioning of the number of spares for each item, by location; and specifying the expected repair times for each type of repair, by item and location. The optimal design minimizes expected shortages within a budget constraint, which covers both (i) procurement of spares and (ii) procurement of equipment and manning levels for the repair facilities. All costs are assumed to be separable so that a Lagrangian approach is fruitful, yielding an implementable algorithm with outputs useful for sensitivity analysis. A numerical example is presented.  相似文献   

5.
A well known preventive replacement policy is the block replacement policy (BRP). In such a policy the item undergoes a planned replacement at a sequence of equally spaced time points independent of failure history. The main advantage of a BRP is its simplicity, because under this policy it is unnecessary to keep detailed records about times of failures or ages of items. The main drawback of a BRP is that at planned replacement times we may be replacing practically new items. In this paper we study a modified BRP which is free of this drawback. We calculate the expected cost of following a modified BRP for lifetime distributions possessing a special structure and illustrate it for the case of an Erlang distribution. A numerical comparison is made between a modified BRP and a standard BRP for the special case of a two stage Erlang distribution.  相似文献   

6.
A job shop must fulfill an order for N good items. Production is conducted in “lots,” and the number of good items in a lot can be accurately determined only after production of that lot is completed. If the number of good items falls short of the outstanding order, the shop must produce further lots, as necessary. Processes with “constant marginal production efficiency” are investigated. The revealed structure allows efficient exact computation of optimal policy. The resulting minimal cost exhibits a consistent (but not universal) pattern whereby higher quality of production is advantageous even at proportionately higher marginal cost.  相似文献   

7.
Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.  相似文献   

8.
An economic two-stage screening procedure based on a dichotomous performance variable T and a continuous screening variable X is proposed. X is measured first to decide whether an item should be accepted, rejected, or additional observations should be taken. If no terminal decision is reached, T is then observed to classify the undecided items. Two models are considered; (i) the logistic model, where P(T = 1|X = x) is assumed to be a logistic function of x, and (ii) the normal model, where X given T is assumed to be normally distributed. A simple economic model based on inspection and misclassification costs is constructed. Optimal cutoff values on the screening variable are obtained by minimizing the expected cost subject to the constraint that the average outgoing quality attains a pre-specified level. Solutions are provided for both known-parameter and unknown-parameter cases. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
In this article we propose new sequential sampling inspection plans with screening indexed by LTPD and AOQL, in which the alternative of accepting or rejecting a lot is decided by the results of sequential sampling plans, based on the minimal lattice paths. It is illustrated that the average total inspection can be economized by using both of the proposed sequential sampling inspection plans, with screening indexed by LTPD and AOQL, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Procurement of advanced technology defence equipment requires appropriate contractual arrangements to achieve efficient R&D investments. This paper analyses the optimality of target‐cost and fixed price contracts and shows that target‐cost pricing can achieve a first best where both fixed‐price contracts and cost reimbursement fail to do so. The main message of this paper is that in incomplete contracting optimality may sometimes be achieved by arrangements which combine several formulae which, individually, would fail to achieve efficiency.  相似文献   

11.
An inspection model in life testing situations is discussed. The system under study is assumed to consist on n independent components all of which fail independently in an exponential fashion. Failures can be discovered only through inspection. The experimenter is assumed to lack the knowledge of the parameter of the exponential distribution. A stochastic sequential inspection policy is suggested which uses the data collected through experimentation to estimate the unknown parameter. It is shown that this policy is asymptotically optimal. Some numerical demonstrations are included.  相似文献   

12.
Passenger prescreening is a critical component of aviation security systems. This paper introduces the Multilevel Allocation Problem (MAP), which models the screening of passengers and baggage in a multilevel aviation security system. A passenger is screened by one of several classes, each of which corresponds to a set of procedures using security screening devices, where passengers are differentiated by their perceived risk levels. Each class is defined in terms of its fixed cost (the overhead costs), its marginal cost (the additional cost to screen a passenger), and its security level. The objective of MAP is to assign each passenger to a class such that the total security is maximized subject to passenger assignments and budget constraints. This paper shows that MAP is NP‐hard and introduces a Greedy heuristic that obtains approximate solutions to MAP that use no more than two classes. Examples are constructed using data extracted from the Official Airline Guide. Analysis of the examples suggests that fewer security classes for passenger screening may be more effective and that using passenger risk information can lead to more effective security screening strategies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

13.
A policy of periodic replacement with minimal repair at failure is considered for a complex system. Under such a policy the system is replaced at multiples of some period T while minimal repair is performed at any intervening system failures. The cost of a minimal repair to the system is assumed to be a nonde-creasing function of its age. A simple expression is derived for the expected minimal repair cost in an interval in terms of the cost function and the failure rate of the system. Necessary and sufficient conditions for the existence of an optimal replacement interval are exhibited in the case where the system life distribution is strictly increasing failure rate (IFR).  相似文献   

14.
A machine or production system is subject to random failure. Upon failure the system is replaced by a new one, and the process repeats. A cost is associated with each replacement, and an additional cost is incurred at each failure in service. Thus, there is an incentive for a controller to attempt to replace before failure occurs. The problem is to find an optimal control strategy that balances the cost of replacement with the cost of failure and results in a minimum total long-run average cost per unit time. We attack this problem under the cumulative damage model for system failure. In this failure model, shocks occur to the system in accordance with a Poisson process. Each shock causes a random amount of damage or wear and these damages accumulate additively. At any given shock, the system fails with a known probability that depends on the total damage accumulated to date. We assume that the cumulative damage is observable by the controller and that his decisions may be based on its current value. Supposing that the shock failure probability is an increasing function of the cumulative damage, we show that an optimal policy is to replace either upon failure or when this damage first exceeds a critical control level, and we give an equation which implicitly defines the optimal control level in terms of the cost and other system parameters. Also treated are some more general models that allow for income lost during repair time and other extensions.  相似文献   

15.
Factor screening is performed to eliminate unimportant factors so that the remaining important factors can be more thoroughly studied in later experiments. Controlled sequential bifurcation (CSB) and controlled sequential factorial design (CSFD) are two new screening methods for discrete‐event simulations. Both methods use hypothesis testing procedures to control the Type I Error and power of the screening results. The scenarios for which each method is most efficient are complementary. This study proposes a two‐stage hybrid approach that combines CSFD and an improved CSB called CSB‐X. In Phase 1, a prescreening procedure will estimate each effect and determine whether CSB‐X or CSFD will be used for further screening. In Phase 2, CSB‐X and CSFD are performed separately based on the assignment of Phase 1. The new method usually has the same error control as CSB‐X and CSFD. The efficiency, on the other hand, is usually much better than either component method. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

16.
The determination as to the cost-effective number of spares for given types of items or equipment to be carried on board various types of ships is studied. This spare pool, known as the ship's COSAL, must provide prespecified levels of protection against stockouts for all uses of that item on board the given ship. This article derives and illustrates the methodology for optimally trading off the reduction in the ship's COSAL that can be gained by improving repair/resupply capabilities or by lowering the failure rate of the equipment through more or different types of preventive maintenance. A flexible class of preventive maintenance/repair response functions to cost is studied which are nonlinear and exhibit realistic diminishing returns. Two different types of assumptions are possible regarding the interdependencies of the resupply times across different ship types. A tractable budget allocation method is presented which can be used in a multiitem, multiship, multiechelon repair environment where there is one budget to cover all spares, all repair/resupply, and preventive maintenance activities. The technique incorporates different criticalities of shortages by type of ship and item. It can be used either in a budget building mode or a budget execution mode.  相似文献   

17.
The Joint Replenishment Problem (JRP) involves production planning for a family of items. The items have a coordinated cost structure whereby a major setup cost is incurred whenever any item in the family is produced, and an item-specific minor setup cost is incurred whenever that item is produced. This paper investigates the performance of two types of cyclical production schedules for the JRP with dynamic demands over a finite planning horizon. The cyclical schedules considered are: (1) general cyclical schedules—schedules where the number of periods between successive production runs for any item is constant over the planning horizon—and (2) power-of-two schedules—a subset of cyclical schedules for which the number of periods between successive setups must be a power of 2. The paper evaluates the additional cost incurred by requiring schedules to be cyclical, and identifies problem characteristics that have a significant effect on this additional cost. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 577–589, 1997.  相似文献   

18.
Populations of many types of component are heterogeneous and often consist of a small number of different subpopulations. This is called a mixture and it arises in a number of situations. For example, a majority of products in industrial populations are mixtures of defective items with shorter lifetimes and standard items with longer lifetimes. It is a well‐known result that distributions with decreasing failure rates are closed under mixture. However, mixtures of distributions with increasing failure rates are not easily classifiable. If the subpopulations involved in the mixture have increasing failure rates, there might be some upward movement in the mixture and later a general downward pull towards the strongest component. Little work has been done in describing the shape of mixture failure rates when all subpopulations do not have decreasing failure rate. In this paper, we present general results that describe the shape and behavior of a failure rate of a mixture obtained from two Weibull subpopulations with strictly increasing failure rates. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

19.
A system is subject to shocks that arrive according to a nonhomogeneous Poisson process. As shocks occur a system has two types of failures. Type 1 failure (minor failure) is removed by a minimal repair, whereas type 2 failure (catastrophic failure) is removed by replacement. The probability of a type 2 failure is permitted to depend on the number of shocks since the last replacement. A system is replaced at the times of type 2 failure or at the nth type 1 failure, whichever comes first. The optimal policy is to select n* to minimize the expected cost per unit time for an infinite time span. A numerical example is given to illustrate the method. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
We consider a group (or family) of items having deterministic, but time-varying, demand patterns. The group is defined by a setup-cost structure that makes coordination attractive (a major setup cost for each group replenishment regardless of how many of the items are involved). The problem is to determine the timing and sizes of the replenishments of all of the items so as to satisfy the demand out to a given horizon in a cost-minimizing fashion. A dynamic programming formulation is illustrated for the case of a two-item family. It is demonstrated that the dynamic programming approach is computationally reasonable, in an operational sense, only for small family sizes. For large families heuristic solution methods appear necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号