首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We present some results for M/M/1 queues with finite capacities with delayed feedback. The delay in the feedback to an M/M/1 queue is modelled as another M-server queue with a finite capacity. The steady state probabilities for the two dimensional Markov process {N(t), M(t)} are solved when N(t) = queue length at server 1 at t and M(t) = queue length at server 2 at t. It is shown that a matrix operation can be performed to obtain the steady state probabilities. The eigenvalues of the operator and its eigenvectors are found. The problem is solved by fitting boundary conditions to the general solution and by normalizing. A sample problem is run to show that the solution methods can be programmed and meaningful results obtained numerically.  相似文献   

2.
The two purposes of this article are to illustrate the power and simplicity of level crossing analysis and to present a conservation identity for M/G/1 priority queues with server vacations. To illustrate the use of level crossing analysis we apply it to preemptive (resume) priority M/G/1 queues with single- and multiple-server vacations considered by Kella and Yechiali (1986) and to non-preemptive priority M/M/c queues considered by Kella and Yechiali (1985). The conservation identity presented here states that the ratios of mean waiting times in an M/G/1 queue with and without server vacation policies are independent of the service discipline for first come first served, shortest processing time, shortest processing time within generations and non-preemptive priority service disciplines.  相似文献   

3.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
The output of the queueing system M/M/1 is well known to be Poisson. This has also been shown to be true for other more general models inclusive of M/Mn/1; the system in which arrivals and epochs of service completion are elements of a birth and death process with parameters Λ and nμ, respectively, when the system contains n ≥ 1 customers. We shall here show that this result is not true in MnM/1; a system where arrival parameter is state dependent quantity Λ/n+1. Expressions will be given for the steady state joint density of two consecutive output intervals as well as the coefficient of correlation between them.  相似文献   

5.
One of the diagrammatic methods for solving two-person 2 × n matrix games can be extended to solve m × n games where each column of the matrix is a concave function of the row number. This gives a simple proof of a theorem of Benjamin and Goldman that such games have solutions involving no more than two consecutive strategies for the row player, and no more than two strategies for the column player. Two extensions are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
This paper presents a general solution for the M/M/r queue with instantaneous jockeying and r > 1 servers. The solution is obtained in matrices in closed form without recourse to the generating function arguments usually used. The solution requires the inversion of two (Zr?1) × (2r?1) matrices. The method proposed is extended to allow different queue selection preferences of arriving customers, balking of arrivals, jockeying preference rules, and queue dependent selection along with jockeying. To illustrate the results, a problem previously published is studied to show how known results are obtained from the proposed general solution.  相似文献   

7.
Consider n jobs (J1, …, Jn), m working stations (M1, …, Mm) and λ linear resources (R1, …, Rλ). Job Ji consists of m operations (Oi1, …, Oim). Operation Oij requires Pk(i, j) units of resource Rk to be realized in an Mj. The availability of resource Rk and the ability of the working station Mh to consume resource Rk, vary over time. An operation involving more than one resource consumes them in constant proportions equal to those in which they are required. The order in which operations are realized is immaterial. We seek an allocation of the resources such that the schedule length is minimized. In this paper, polynomial algorithms are developed for several problems, while NP-hardness is demonstrated for several others. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 51–66, 1998  相似文献   

8.
We consider an M/G/1 retrial queue with finite capacity of the retrial group. First, we obtain equations governing the dynamic of the waiting time. Then, we focus on the numerical inversion of the density function and the computation of moments. These results are used to approximate the waiting time of the M/G/1 queue with infinite retrial group for which direct analysis seems intractable. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
We consider a model with M + N identical machines. As many as N of these can be working at any given time and the others act as standby spares. Working machines fail at exponential rate λ, spares fail at exponential rale γ, and failed machines are repaired at exponential rate μ. The control variables are λ. μ, and the number of removable repairman, S, to be operated at any given time. Using the criterion of total expected discounted cost, we show that λ, S, and μ are monotonic functions of the number of failed machines M, N, the discount factor, and for the finite time horizon model, the amount of time remaining.  相似文献   

10.
In this article, an integral equation satisfied by the second moment function M2(t) of a geometric process is obtained. The numerical method based on the trapezoidal integration rule proposed by Tang and Lam for the geometric function M(t) is adapted to solve this integral equation. To illustrate the numerical method, the first interarrival time is assumed to be one of four common lifetime distributions, namely, exponential, gamma, Weibull, and lognormal. In addition to this method, a power series expansion is derived using the integral equation for the second moment function M2(t), when the first interarrival time has an exponential distribution.  相似文献   

11.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
This article deals with the M/G/1 queue with server vacations in which the return of the server to service depends on the number of customers present in the system. The main goal is optimization, which is done under the average cost criterion in the multiple- and single-vacation models as well as for the “total cost for one busy cycle” criterion in the multiple-vacation case. Expressions that characterize the optimal number of customers, below which the server should not start a new service period, are exhibited for the various cases. It is found that under the average cost criterion, the expression may be universal in the sense that it may hold for a general class of problems including such that arise in production planning and inventory theory (for the particular cost structure discussed).  相似文献   

13.
We consider a system of N (nonsymmetric) machine centers of the K-out-of-M : G type that are maintained by a single repairman. [A machine center functions if and only if at least K of the M machines belonging to the center are good (G).] Such systems are commonly found in various manufacturing and service industries. A stochastic model is developed that accommodates generally distributed repair times and repairman walk times, and most repair scheduling disciplines. K-out-of-M : G type systems also appear as a modeling paradigm in reliability analysis and polling systems performance analysis. Several performance measures are derived for machine-repair systems having K-out-of-M-type centers. A simple example system is developed in detail that exposes the computations involved in modeling applications. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
The paper addresses the problem of a patrol trying to stop smugglers who are attempting to ship a cargo of perishable contraband across a strait in one of M time units. The situation was modeled as a two-person zero-sum game of exhaustion by Thomas and Nisgav and this article extends their results. The game has many characteristics in common with the Inspection Game in Owen's book on Game Theory; this Inspection Game is generalized and the relations between the two games are discussed.  相似文献   

15.
The individual and social optimum control policies for entry to an M/M//1 queue serving several classes of customers have been shown to be control-limit policies. The technique of policy iteration provides the social optimum policy for such a queue in a straightforward manner. In this article, the problem of finding the optimal control policy for the M/Ek/1 system is solved, thereby expanding the potential applicability of the solutions developed. The Markovian nature of the queueing system is preserved by considering the service as having k sequential phases, each with independent, identically distributed, exponential service times, through which a customer must pass to be serviced. The optimal policy derived by policy iteration for such a system is likely to be difficult to use because it requires knowledge of the number of phases rather than customers in the system when an arrival occurs. To circumvent this difficulty, a heuristic is used to find a good usable (implementable) solution. In addition, a mixed-integer program is developed which yields the optimal implementable solution when solved.  相似文献   

16.
Capacity expansion refers to the process of adding facilities or manpower to meet increasing demand. Typical capacity expansion decisions are characterized by uncertain demand forecasts and uncertainty in the eventual cost of expansion projects. This article models capacity expansion within the framework of piecewise deterministic Markov processes and investigates the problem of controlling investment in a succession of same type projects in order to meet increasing demand with minimum cost. In particular, we investigate the optimality of a class of investment strategies called cutoff strategies. These strategies have the property that there exists some undercapacity level M such that the strategy invests at the maximum available rate at all levels above M and does not invest at any level below M. Cutoff strategies are appealing because they are straightforward to implement. We determine conditions on the undercapacity penalty function that ensure the existence of optimal cutoff strategies when the cost of completing a project is exponentially distributed. A by-product of the proof is an algorithm for determining the optimal strategy and its cost. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
In this article, we seek to understand how a capacity‐constrained seller optimally prices and schedules product shipping to customers who are heterogeneous on willingness to pay (WTP) and willingness to wait (WTW). The capacity‐constrained seller does not observe each customer's WTP and WTW and knows only the aggregate distributions of WTP and WTW. The seller's problem is modeled as an M/M/Ns queueing model with multiclass customers and multidimensional information screening. We contribute to the literature by providing an optimal and efficient algorithm. Furthermore, we numerically find that customers with a larger waiting cost enjoys a higher scheduling priority, but customers with higher valuation do not necessarily get a higher scheduling priority. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 215–227, 2015  相似文献   

18.
The properties of robust M estimators with randomly right-censored response variables in linear regression models are considered. The most robust and the optimal robust M estimators of the regression parameters are derived within a class of η functions considered in James [5] as well as for a class of η functions corresponding to the general unrestricted class. The usefulness of the estimators corresponding to these two classes are examined. From the computational point of view the James-type η functions are readily obtainable from the η functions in the uncensored case. However, it is found that the breakdown point of the optimal James-type estimators can be lower than the breakdown point of the corresponding optimal robust estimators for nonsymmetric parent distribution functions such as the extreme value distribution. In addition, the efficiency of the optimal James-type estimators is somewhat lower than the efficiency of the optimal robust estimators.  相似文献   

19.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
We analyze an (S-1, S) inventory model with compound Poisson demands. Resupply times for individual units are independent and identically distributed. Such a model can also be characterized as an MX/G/∞ queue. We derive expressions of performance measure such as the steady-state distribution and the expectation of the number of backlogged units. In addition, numerical examples are included to reflect the effects of i.i.d. unit resupply times. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号