首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

2.
Consider a k-out-of-n system with independent repairable components. Assume that the repair and failure distributions are exponential with parameters {μ1, ?,μn} and {λ1, ?,λn}, respectively. In this article we show that if λi – μi = Δ for all i then the life distribution of the system is increasing failure rate (IFR).  相似文献   

3.
Let X and Xτ denote the lifetime and the residual life at age τ of a system, respectively. X is said to be a NBUL random variable if Xτ is smaller than X in Laplace order, i.e., XτL X. We obtain some characterizations for this class of life distribution by means of the lifetime of a series system and the residual life at random time. We also discuss preservation properties for this class of life distribution under shock models. Finally, under the assumption that the lifetimes have the NBUL property, we make stochastic comparisons between some basic replacement policies. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 578–591, 2001.  相似文献   

4.
We present probabilistic proofs for the following two facts: (i) A k out of n system of i.i.d (independent identically distributed). IFR (increasing failure rate) components has an IFR life distribution. (ii) A compound Poisson process with nonnegative i.i.d jumps with PF2 distribution is IFR.  相似文献   

5.
Consider a reliability system consisting of n components. The failures and the repair completions of the components can occur only at positive integer-valued times k ϵ N++ ϵ (1, 2, …). At any time k ϵ N++ each component can be in one of two states: up (i.e., working) or down (i.e., failed and in repair). The system state is also either up or down and it depends on the states of the components through a coherent structure function τ. In this article we formulate mathematically the above model and we derive some of its properties. In particular, we identify conditions under which the first failure times of two such systems can be stochastically ordered. A variety of special cases is used in order to illustrate the applications of the derived properties of the model. Some instances in which the times of first failure have the NBU (new better than used) property are pointed out. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In this paper, we consider a coherent system with n independent and identically distributed components under the condition that the system is monitored at time instances t1 and t2 (t1 < t2). First, various mixture representations for reliability function of the conditional residual lifetime of the coherent system are derived under different scenarios at times t1 and t2 (t1 < t2). Several stochastic comparisons between two systems are also made based on the proposed conditional random variables. Then, we consider the conditional residual lifetime of the functioning components of the system given that j components have failed at time t1 and the system has failed at time t2. Some stochastic comparisons on the proposed conditional residual lifetimes are investigated. Several illustrative graphs and examples are also provided.  相似文献   

7.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

8.
A system reliability is often evaluated by individual tests of components that constitute the system. These component test plans have advantages over complete system based tests in terms of time and cost. In this paper, we consider the series system with n components, where the lifetime of the i‐th component follows exponential distribution with parameter λi. Assuming test costs for the components are different, we develop an efficient algorithm to design a two‐stage component test plan that satisfies the usual probability requirements on the system reliability and in addition minimizes the maximum expected cost. For the case of prior information in the form of upper bounds on λi's, we use the genetic algorithm to solve the associated optimization problems which are otherwise difficult to solve using mathematical programming techniques. The two‐stage component test plans are cost effective compared to single‐stage plans developed by Rajgopal and Mazumdar. We demonstrate through several numerical examples that our approach has the potential to reduce the overall testing costs significantly. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 95–116, 2002; DOI 10.1002/nav.1051  相似文献   

9.
An R out of N repairable system consisting of N components and operates if at least R components are functioning. Repairable means that failed components are repaired, and upon repair completion they are as good as new. We derive formulas for the expected up‐time, expected down‐time, and the availability of the system, using Markov renewal processes. We assume that either the repair times of the components are generally distributed and the components' lifetimes are exponential or vice versa. The analysis is done for systems with either cold or warm stand‐by. Numerical examples are given for several life time and repair time distributions. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 483–498, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10025  相似文献   

10.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

11.
We consider a system composed of k components, each of which is subject to failure if temperature is above a critical level. The failure of one component causes the failure of the system as a whole (a serially connected system). If zi is the critical temperature of the ith component then z* = min{zi: i = 1,2,…, k} is the critical level of the system. The components may be tested individually at different temperature levels, if the temperature is below the critical level the cost is $1, otherwise the test is destructive and the cost is m > 1 dollars. The purpose of this article is to construct, under a budgetary constraint, an efficient (in a minmax sense) testing procedure which will locate the critical level of the system with maximal accuracy.  相似文献   

12.
This paper is concerned with the joint prior distribution of the dependent reliabilities of the components of a binary system. When this distribution is MTP2 (Multivariate Totally Positive of Order 2), it is shown in general that this actually makes the machinery of Natvig and Eide [7] available to arrive at the posterior distribution of the system's reliability, based on data both at the component and system level. As an illustration in a common environmental stress case, the joint prior distribution of the reliabilities is shown to have the MTP2 property. We also show, similarly to Gåsemyr and Natvig [3], for the case of independent components given component reliabilities how this joint prior distribution may be based on the combination of expert opinions. A specific system is finally treated numerically. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 741–755, 1997  相似文献   

13.
The notion of signature has been widely applied for the reliability evaluation of technical systems that consist of binary components. Multi‐state system modeling is also widely used for representing real life engineering systems whose components can have different performance levels. In this article, the concept of survival signature is generalized to a certain class of unrepairable homogeneous multi‐state systems with multi‐state components. With such a generalization, a representation for the survival function of the time spent by a system in a specific state or above is obtained. The findings of the article are illustrated for multi‐state consecutive‐k‐out‐of‐n system which perform its task at three different performance levels. The generalization of the concept of survival signature to a multi‐state system with multiple types of components is also presented. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 593–599, 2017  相似文献   

14.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

15.
Allocation of spare components in a system in order to optimize the lifetime of the system with respect to a suitable criterion is of considerable interest in reliability, engineering, industry, and defense. We consider the problem of allocation of K active spares to a series system of independent and identical components in order to optimize the failure-rate function of the system. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
The fleet warranty guarantees the purchaser of a large population of like items that the mean life of the fleet will meet or exceed some negotiated mean μL. If the mean life is less than μL, compensation may be given in terms of a number of free replacement parts R. The expected number of replacements E[R] is studied based upon how the mean life of items in the field is determined and on whether the sampling window starts at time t = 0 (ordinary renewal process) or at some arbitrarily large time w (equilibrium renewal process). Properties of E[R] are compared and examples are given. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

18.
The authors study a discrete-time, infinite-horizon, dynamic programming model for the replacement of components in a binary k-out-of-n failure system. (The system fails when k or more of its n components fail.) Costs are incurred when the system fails and when failed components are replaced. The objective is to minimize the long-run expected average undiscounted cost per period. A companion article develops a branch-and-bound algorithm for computing optimal policies. Extensive computational experiments find it effective for k to be small or near n; however, difficulties are encountered when n ≥ 30 and 10 ≤ kn − 4. This article presents a simple, intuitive heuristic rule for determining a replacement policy whose memory storage and computation time requirements are O(n − k) and O(n(n − k) + k), respectively. This heuristic is based on a plausible formula for ranking components in order of their usefulness. The authors provide sufficient conditions for it to be optimal and undertake computational experiments that suggest that it handles parallel systems (k = n) effectively and, further, that its effectiveness increases as k moves away from n. In our test problems, the mean relative errors are under 5% when n ≤ 100 and under 2% when kn − 3 and n ≤ 50. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 273–286, 1997.  相似文献   

19.
Consider a binary, monotone system of n components. The assessment of the parameter vector, θ, of the joint distribution of the lifetimes of the components and hence of the reliability of the system is often difficult due to scarcity of data. It is therefore important to make use of all information in an efficient way. For instance, prior knowledge is often of importance and can indeed conveniently be incorporated by the Bayesian approach. It may also be important to continuously extract information from a system currently in operation. This may be useful both for decisions concerning the system in operation as well as for decisions improving the components or changing the design of similar new systems. As in Meilijson [12], life‐monitoring of some components and conditional life‐monitoring of some others is considered. In addition to data arising from this monitoring scheme, so‐called autopsy data are observed, if not censored. The probabilistic structure underlying this kind of data is described, and basic likelihood formulae are arrived at. A thorough discussion of an important aspect of this probabilistic structure, the inspection strategy, is given. Based on a version of this strategy a procedure for preventive system maintenance is developed and a detailed application to a network system presented. All the way a Bayesian approach to estimation of θ is applied. For the special case where components are conditionally independent given θ with exponentially distributed lifetimes it is shown that the weighted sum of products of generalized gamma distributions, as introduced in Gåsemyr and Natvig [7], is the conjugate prior for θ. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 551–577, 2001.  相似文献   

20.
We consider a make‐to‐order production system where two major components, one nonperishable (referred to as part 1) and one perishable (part 2), are needed to fulfill a customer order. In each period, replenishment decisions for both parts need to be made jointly before demand is realized and a fixed ordering cost is incurred for the nonperishable part. We show that a simple (sn,S,S) policy is optimal. Under this policy, S along with the number of backorders at the beginning of a period if any and the availability of the nonperishable part (part 1) determines the optimal order quantity of the perishable part (part 2), while (sn,S) guide when and how much of part 1 to order at each state. Numerical study demonstrates that the benefits of using the joint replenishment policy can be substantial, especially when the unit costs are high and/or the profit margin is low. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号